
Tools for Chips

Daniel Maslowski aka CyReVolt



Hello, I am Daniel aka CyReVolt :‑)
Work and education

IT security and computer science
software engineering
infrastructure and web
apps, UIs, ecommerce

Open Source contributions
hardware and firmware
operating systems
software distributions
reverse engineering

I created Fiedka the firmware editor (https://fiedka.app) and
started the Platform System Interface project:
https://github.com/platform‑system‑interface/

https://fiedka.app
https://github.com/platform-system-interface/


Hello, I am Daniel aka CyReVolt :‑)
Work and education

IT security and computer science
software engineering
infrastructure and web
apps, UIs, ecommerce

Open Source contributions
hardware and firmware
operating systems
software distributions
reverse engineering

I created Fiedka the firmware editor (https://fiedka.app) and
started the Platform System Interface project:
https://github.com/platform‑system‑interface/

https://fiedka.app
https://github.com/platform-system-interface/


Agenda

Systems and Chips
Mask ROM Protocols
Implementations



Systems and Chips



What is a System?

System1 a set of components following rules and acting as a whole
modern chips are designed as systems

▶ aka System on a Chip (SoC)
systemsmay as well be virtual

▶ e.g., operating system
https://github.com/platform‑system‑
interface/psi‑spec/issues/24

Platform2 a systemwith stable interfaces, providing an environment

Note: stable here means being only extended or changing slowly/rarely.

1https://en.wikipedia.org/wiki/System (adapted)

2https://en.wikipedia.org/wiki/Computing_platform (adapted)

https://github.com/platform-system-interface/psi-spec/issues/24
https://github.com/platform-system-interface/psi-spec/issues/24
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Computing_platform


What is a System?
System1 a set of components following rules and acting as a whole

modern chips are designed as systems
▶ aka System on a Chip (SoC)

systemsmay as well be virtual
▶ e.g., operating system

https://github.com/platform‑system‑
interface/psi‑spec/issues/24

Platform2 a systemwith stable interfaces, providing an environment

Note: stable here means being only extended or changing slowly/rarely.

1https://en.wikipedia.org/wiki/System (adapted)

2https://en.wikipedia.org/wiki/Computing_platform (adapted)

https://github.com/platform-system-interface/psi-spec/issues/24
https://github.com/platform-system-interface/psi-spec/issues/24
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Computing_platform


What is a System?
System1 a set of components following rules and acting as a whole

modern chips are designed as systems
▶ aka System on a Chip (SoC)

systemsmay as well be virtual
▶ e.g., operating system

https://github.com/platform‑system‑
interface/psi‑spec/issues/24

Platform2 a systemwith stable interfaces, providing an environment

Note: stable here means being only extended or changing slowly/rarely.

1https://en.wikipedia.org/wiki/System (adapted)
2https://en.wikipedia.org/wiki/Computing_platform (adapted)

https://github.com/platform-system-interface/psi-spec/issues/24
https://github.com/platform-system-interface/psi-spec/issues/24
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Computing_platform


What is a System?
System1 a set of components following rules and acting as a whole

modern chips are designed as systems
▶ aka System on a Chip (SoC)

systemsmay as well be virtual
▶ e.g., operating system

https://github.com/platform‑system‑
interface/psi‑spec/issues/24

Platform2 a systemwith stable interfaces, providing an environment

Note: stable here means being only extended or changing slowly/rarely.
1https://en.wikipedia.org/wiki/System (adapted)
2https://en.wikipedia.org/wiki/Computing_platform (adapted)

https://github.com/platform-system-interface/psi-spec/issues/24
https://github.com/platform-system-interface/psi-spec/issues/24
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Computing_platform


SoCs and SoMs

System on Chip
contained in a chip package

▶ often with many pins
multiple form factorsa

▶ BGA (ball grid array)
▶ QFP (quad flat package)

ahttps://electrical‑information.com/package‑types/

System on Module
a PCB to integrate in a product
many form factors, few standardsa

▶ “stamp”, a rectangle with contacts at the edges
▶ “gold finger” connectors
▶ CM (Compute Module)

ahttps://www.compulab.com/blog/how‑to‑choose‑the‑right‑
system‑on‑module‑som‑selection‑guide

https://electrical-information.com/package-types/
https://www.compulab.com/blog/how-to-choose-the-right-system-on-module-som-selection-guide
https://www.compulab.com/blog/how-to-choose-the-right-system-on-module-som-selection-guide


SoCs and SoMs
System on Chip

contained in a chip package
▶ often with many pins

multiple form factorsa
▶ BGA (ball grid array)
▶ QFP (quad flat package)

ahttps://electrical‑information.com/package‑types/

System on Module
a PCB to integrate in a product
many form factors, few standardsa

▶ “stamp”, a rectangle with contacts at the edges
▶ “gold finger” connectors
▶ CM (Compute Module)

ahttps://www.compulab.com/blog/how‑to‑choose‑the‑right‑
system‑on‑module‑som‑selection‑guide

https://electrical-information.com/package-types/
https://www.compulab.com/blog/how-to-choose-the-right-system-on-module-som-selection-guide
https://www.compulab.com/blog/how-to-choose-the-right-system-on-module-som-selection-guide


From ROM to OS

Typical SoCs have early code in their mask ROM, sometimes also called
BROM (boot ROM) or ZSBL (Zero Stage Boot Loader).

Boot ROMsmay offer protocols for loading over serial or USB ports, which is
great for development and ownership.



From ROM to OS

Typical SoCs have early code in their mask ROM, sometimes also called
BROM (boot ROM) or ZSBL (Zero Stage Boot Loader).

Boot ROMsmay offer protocols for loading over serial or USB ports, which is
great for development and ownership.



From ROM to OS

Typical SoCs have early code in their mask ROM, sometimes also called
BROM (boot ROM) or ZSBL (Zero Stage Boot Loader).

Boot ROMsmay offer protocols for loading over serial or USB ports, which is
great for development and ownership.



From ROM to OS

Typical SoCs have early code in their mask ROM, sometimes also called
BROM (boot ROM) or ZSBL (Zero Stage Boot Loader).

Boot ROMsmay offer protocols for loading over serial or USB ports, which is
great for development and ownership.



Mask ROM Protocols



Mask ROM

baked into a chip
initial code run by a
processor/SoC

▶ hence aka boot ROM
oftenmapped to memory
dump to file and load into
Ghidra to study
find strings, figure out flow
flowmay depend on settings

▶ OTP
▶ GPIOs



Mask ROM

baked into a chip
initial code run by a
processor/SoC

▶ hence aka boot ROM
oftenmapped to memory
dump to file and load into
Ghidra to study
find strings, figure out flow
flowmay depend on settings

▶ OTP
▶ GPIOs



Mask ROM

baked into a chip
initial code run by a
processor/SoC

▶ hence aka boot ROM
oftenmapped to memory
dump to file and load into
Ghidra to study
find strings, figure out flow
flowmay depend on settings

▶ OTP
▶ GPIOs



Why bother?

Many SBCs and consumer products are based on SoCs.

Youmay want to develop or run custom software…



Why bother?
Many SBCs and consumer products are based on SoCs.

Youmay want to develop or run custom software…



Why bother?
Many SBCs and consumer products are based on SoCs.

Youmay want to develop or run custom software…



Why bother?
Many SBCs and consumer products are based on SoCs.

Youmay want to develop or run custom software…



General notes and issues

Many vendors have proprietary procotols and/or custom commands.

There is usually no or little documentation on the protocol.

We can look at vendor tools if they provide source code, or reverse engineer.

Serial output can tell us something about the machine state.

Additional knowledge can be gained frommask ROM analysis.

Sometimes there are hidden commands or details that are not documented.

Dealing with OTP (one‑time programmable) configuration can be complex.



General notes and issues

Many vendors have proprietary procotols and/or custom commands.

There is usually no or little documentation on the protocol.

We can look at vendor tools if they provide source code, or reverse engineer.

Serial output can tell us something about the machine state.

Additional knowledge can be gained frommask ROM analysis.

Sometimes there are hidden commands or details that are not documented.

Dealing with OTP (one‑time programmable) configuration can be complex.



General notes and issues

Many vendors have proprietary procotols and/or custom commands.

There is usually no or little documentation on the protocol.

We can look at vendor tools if they provide source code, or reverse engineer.

Serial output can tell us something about the machine state.

Additional knowledge can be gained frommask ROM analysis.

Sometimes there are hidden commands or details that are not documented.

Dealing with OTP (one‑time programmable) configuration can be complex.



General notes and issues

Many vendors have proprietary procotols and/or custom commands.

There is usually no or little documentation on the protocol.

We can look at vendor tools if they provide source code, or reverse engineer.

Serial output can tell us something about the machine state.

Additional knowledge can be gained frommask ROM analysis.

Sometimes there are hidden commands or details that are not documented.

Dealing with OTP (one‑time programmable) configuration can be complex.



General notes and issues

Many vendors have proprietary procotols and/or custom commands.

There is usually no or little documentation on the protocol.

We can look at vendor tools if they provide source code, or reverse engineer.

Serial output can tell us something about the machine state.

Additional knowledge can be gained frommask ROM analysis.

Sometimes there are hidden commands or details that are not documented.

Dealing with OTP (one‑time programmable) configuration can be complex.



General notes and issues

Many vendors have proprietary procotols and/or custom commands.

There is usually no or little documentation on the protocol.

We can look at vendor tools if they provide source code, or reverse engineer.

Serial output can tell us something about the machine state.

Additional knowledge can be gained frommask ROM analysis.

Sometimes there are hidden commands or details that are not documented.

Dealing with OTP (one‑time programmable) configuration can be complex.



General notes and issues

Many vendors have proprietary procotols and/or custom commands.

There is usually no or little documentation on the protocol.

We can look at vendor tools if they provide source code, or reverse engineer.

Serial output can tell us something about the machine state.

Additional knowledge can be gained frommask ROM analysis.

Sometimes there are hidden commands or details that are not documented.

Dealing with OTP (one‑time programmable) configuration can be complex.



General notes and issues

Many vendors have proprietary procotols and/or custom commands.

There is usually no or little documentation on the protocol.

We can look at vendor tools if they provide source code, or reverse engineer.

Serial output can tell us something about the machine state.

Additional knowledge can be gained frommask ROM analysis.

Sometimes there are hidden commands or details that are not documented.

Dealing with OTP (one‑time programmable) configuration can be complex.



Implementations



StarFive JH71x0

https://github.com/platform‑system‑interface/jh_boot

Interface UART

Protocol Xmodem, with quirks

The JH71x0 mask ROM either loads code from a storage part (recommended:
SPI flash) or via serial, which is slow. No other functionality appears to be
available.

https://www.youtube.com/watch?v=SWrjYX8ZSb8&list=PLenOHeTI_A9MJlY
IOAVC0JDpKKXX9mZgK&pp=gAQB

https://github.com/platform-system-interface/jh_boot
https://www.youtube.com/watch?v=SWrjYX8ZSb8&list=PLenOHeTI_A9MJlYIOAVC0JDpKKXX9mZgK&pp=gAQB
https://www.youtube.com/watch?v=SWrjYX8ZSb8&list=PLenOHeTI_A9MJlYIOAVC0JDpKKXX9mZgK&pp=gAQB


Amlogic

https://github.com/platform‑system‑interface/aml_boot

Interface USB

Protocol proprietary, later fastboot

Different SoCs offer different functionality, sometimes restricted, possibly
due to OTP fuses.

https://mastodon.social/@CyReVolt/111194596957100647

https://github.com/platform-system-interface/aml_boot
https://mastodon.social/@CyReVolt/111194596957100647


Canaan Kendryte

https://github.com/platform‑system‑interface/kendryte_boot

Interface USB

Protocol proprietary

The protocol has simple commands to load and run code. The client supplies
the address to load to. Jumping back into the mask ROM to load additional
code is possible.

https://www.youtube.com/watch?v=hfz8QBB4M3g&list=PLenOHeTI_A9N0hj
5wNEezqirGm7JaLgDP&pp=gAQB

https://github.com/platform-system-interface/kendryte_boot
https://www.youtube.com/watch?v=hfz8QBB4M3g&list=PLenOHeTI_A9N0hj5wNEezqirGm7JaLgDP&pp=gAQB
https://www.youtube.com/watch?v=hfz8QBB4M3g&list=PLenOHeTI_A9N0hj5wNEezqirGm7JaLgDP&pp=gAQB


DEMO



Bouffalo Lab
https://github.com/platform‑system‑interface/bl_boot

Interface UART

Protocol proprietary

The BL808 SoC offers a lot of functionality. It can read from and write to flash,
read out and program OTP fuses, and load and execute code. It can run at
high baud rates, so big payloads are not much of an issue. There need to be
large and complex headers to run code though.

We gained a lot of knowledge thanks to earlier work from the community:

https://openbouffalo.github.io/chips/bl808/efuse/
https://openbouffalo.org/index.php/BL808

https://www.youtube.com/watch?v=ARyhNbjE0VM&list=PLenOHeTI_A9Mw
A0HlNogiJVvU5RtsDSz9&pp=gAQB

https://github.com/platform-system-interface/bl_boot
https://openbouffalo.github.io/chips/bl808/efuse/
https://openbouffalo.org/index.php/BL808
https://www.youtube.com/watch?v=ARyhNbjE0VM&list=PLenOHeTI_A9MwA0HlNogiJVvU5RtsDSz9&pp=gAQB
https://www.youtube.com/watch?v=ARyhNbjE0VM&list=PLenOHeTI_A9MwA0HlNogiJVvU5RtsDSz9&pp=gAQB


DEMO



Sophgo

https://github.com/platform‑system‑interface/sg_boot

Interface UART

Protocol proprietary

SG200x/CVITEK SoCs are very sensitive. Some serial adapters would mostly
error, and the software running on the SoC has to define the load address.

https://github.com/platform-system-interface/sg_boot


More vendors and tools3

Proprietary
Allwinner: sunxi-fel, xfel, aw-fel-cli (we forked it)
Rockchip: rkflashtool, rkdeveloptool
Amlogic: pyamlboot (starting point for aml_boot)
NXP: uuu, imx_usb_loader
Qualcomm: qtools, qbootcl, qdl, …
… keep your eyes open :‑)

General
Android: fastboot (details vary per vendor)

▶ some chips support it in their mask ROM
▶ we forked a Rust client implementation:

https://github.com/platform‑system‑interface/fastboot
▶ also available in U‑Boot
▶ Qualcomm ported it to LK (little kernel)

snagboot (multitool)
3https://platform‑system‑interface.github.io/psi‑spec/mask‑roms‑loaders.html

https://github.com/forth32/qtools
https://github.com/platform-system-interface/fastboot
https://github.com/bootlin/snagboot
https://platform-system-interface.github.io/psi-spec/mask-roms-loaders.html


More vendors and tools3
Proprietary

Allwinner: sunxi-fel, xfel, aw-fel-cli (we forked it)
Rockchip: rkflashtool, rkdeveloptool
Amlogic: pyamlboot (starting point for aml_boot)
NXP: uuu, imx_usb_loader
Qualcomm: qtools, qbootcl, qdl, …
… keep your eyes open :‑)

General
Android: fastboot (details vary per vendor)

▶ some chips support it in their mask ROM
▶ we forked a Rust client implementation:

https://github.com/platform‑system‑interface/fastboot
▶ also available in U‑Boot
▶ Qualcomm ported it to LK (little kernel)

snagboot (multitool)

3https://platform‑system‑interface.github.io/psi‑spec/mask‑roms‑loaders.html

https://github.com/forth32/qtools
https://github.com/platform-system-interface/fastboot
https://github.com/bootlin/snagboot
https://platform-system-interface.github.io/psi-spec/mask-roms-loaders.html


More vendors and tools3
Proprietary

Allwinner: sunxi-fel, xfel, aw-fel-cli (we forked it)
Rockchip: rkflashtool, rkdeveloptool
Amlogic: pyamlboot (starting point for aml_boot)
NXP: uuu, imx_usb_loader
Qualcomm: qtools, qbootcl, qdl, …
… keep your eyes open :‑)

General
Android: fastboot (details vary per vendor)

▶ some chips support it in their mask ROM
▶ we forked a Rust client implementation:

https://github.com/platform‑system‑interface/fastboot
▶ also available in U‑Boot
▶ Qualcomm ported it to LK (little kernel)

snagboot (multitool)
3https://platform‑system‑interface.github.io/psi‑spec/mask‑roms‑loaders.html

https://github.com/forth32/qtools
https://github.com/platform-system-interface/fastboot
https://github.com/bootlin/snagboot
https://platform-system-interface.github.io/psi-spec/mask-roms-loaders.html


Conclusion

Many different chips and protocols exist.

With the right tools, we can leverage their capabilities.

The lowest common denominator is to load and run code.

Our goal is to run our code as early as possible.

We can provide our own interfaces again for portability.



Thanks! :)



Follow Me

Daniel Maslowski

https://github.com/orangecms
https://twitter.com/orangecms
https://mastodon.social/@cyrevolt
https://twitch.tv/cyrevolt
https://youtube.com/@cyrevolt

https://metaspora.org/tools‑for‑chips.pdf

https://pretalx.installfest.cz/installfest‑2024/speaker/HDFYXV/

https://metaspora.org/before‑linux.pdf

https://platform‑system‑interface.github.io/psi‑spec

License: CC BY 4.0 https://creativecommons.org/licenses/by/4.0/

https://github.com/orangecms
https://twitter.com/orangecms
https://mastodon.social/@cyrevolt
https://twitch.tv/cyrevolt
https://youtube.com/@cyrevolt
https://metaspora.org/tools-for-chips.pdf
https://pretalx.installfest.cz/installfest-2024/speaker/HDFYXV/
https://metaspora.org/before-linux.pdf
https://platform-system-interface.github.io/psi-spec
https://creativecommons.org/licenses/by/4.0/

	Systems and Chips
	Mask ROM Protocols
	Implementations
	DEMO
	DEMO
	Thanks! :)

