
Rust WebAssembly in Electron

Daniel Maslowski



Agenda

Rust and WebAssembly
Rust Wasm in Fiedka
Rust Wasm in dtvis



Rust and WebAssembly



What if…

…we compile Rust… … toWasm… …and use it in an app?

Magic happens ‑ we can use native code on web platforms!



What if…

…we compile Rust…

… toWasm… …and use it in an app?

Magic happens ‑ we can use native code on web platforms!



What if…

…we compile Rust… … toWasm…

…and use it in an app?

Magic happens ‑ we can use native code on web platforms!



What if…

…we compile Rust… … toWasm… …and use it in an app?

Magic happens ‑ we can use native code on web platforms!



What if…

…we compile Rust… … toWasm… …and use it in an app?

Magic happens ‑ we can use native code on web platforms!



Howto

Getting started
https://lannonbr.com/blog/2020‑01‑07‑rust‑wasmpack/
https://rustwasm.github.io/docs/wasm‑pack/

TL;DR
cargo install wasm-pack
wasm-pack new my-rust-wasm-foo

The glue
https://github.com/wasm‑tool/wasm‑pack‑plugin
https://rustwasm.github.io/docs/wasm‑pack/tutorials/hybrid‑
applications‑with‑webpack/using‑your‑library.html

More glue
cargo add gloo-utils

https://lannonbr.com/blog/2020-01-07-rust-wasmpack/
https://rustwasm.github.io/docs/wasm-pack/
https://github.com/wasm-tool/wasm-pack-plugin
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html


Howto
Getting started
https://lannonbr.com/blog/2020‑01‑07‑rust‑wasmpack/
https://rustwasm.github.io/docs/wasm‑pack/

TL;DR
cargo install wasm-pack
wasm-pack new my-rust-wasm-foo

The glue
https://github.com/wasm‑tool/wasm‑pack‑plugin
https://rustwasm.github.io/docs/wasm‑pack/tutorials/hybrid‑
applications‑with‑webpack/using‑your‑library.html

More glue
cargo add gloo-utils

https://lannonbr.com/blog/2020-01-07-rust-wasmpack/
https://rustwasm.github.io/docs/wasm-pack/
https://github.com/wasm-tool/wasm-pack-plugin
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html


Howto
Getting started
https://lannonbr.com/blog/2020‑01‑07‑rust‑wasmpack/
https://rustwasm.github.io/docs/wasm‑pack/

TL;DR
cargo install wasm-pack
wasm-pack new my-rust-wasm-foo

The glue
https://github.com/wasm‑tool/wasm‑pack‑plugin
https://rustwasm.github.io/docs/wasm‑pack/tutorials/hybrid‑
applications‑with‑webpack/using‑your‑library.html

More glue
cargo add gloo-utils

https://lannonbr.com/blog/2020-01-07-rust-wasmpack/
https://rustwasm.github.io/docs/wasm-pack/
https://github.com/wasm-tool/wasm-pack-plugin
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html


Howto
Getting started
https://lannonbr.com/blog/2020‑01‑07‑rust‑wasmpack/
https://rustwasm.github.io/docs/wasm‑pack/

TL;DR
cargo install wasm-pack
wasm-pack new my-rust-wasm-foo

The glue
https://github.com/wasm‑tool/wasm‑pack‑plugin
https://rustwasm.github.io/docs/wasm‑pack/tutorials/hybrid‑
applications‑with‑webpack/using‑your‑library.html

More glue
cargo add gloo-utils

https://lannonbr.com/blog/2020-01-07-rust-wasmpack/
https://rustwasm.github.io/docs/wasm-pack/
https://github.com/wasm-tool/wasm-pack-plugin
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html


Howto
Getting started
https://lannonbr.com/blog/2020‑01‑07‑rust‑wasmpack/
https://rustwasm.github.io/docs/wasm‑pack/

TL;DR
cargo install wasm-pack
wasm-pack new my-rust-wasm-foo

The glue
https://github.com/wasm‑tool/wasm‑pack‑plugin
https://rustwasm.github.io/docs/wasm‑pack/tutorials/hybrid‑
applications‑with‑webpack/using‑your‑library.html

More glue
cargo add gloo-utils

https://lannonbr.com/blog/2020-01-07-rust-wasmpack/
https://rustwasm.github.io/docs/wasm-pack/
https://github.com/wasm-tool/wasm-pack-plugin
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html


The Rust side

extern crate wasm_bindgen;
use gloo_utils::format::JsValueSerdeExt;
use serde::{Deserialize, Serialize};
use wasm_bindgen::prelude::*;
/// ...
#[derive(Serialize, Deserialize)]
struct Foo {

bar: u32,
baz: String,

}
#[wasm_bindgen]
pub fn some_fun(data: JsValue) -> JsValue {

/// ...
let foo = Foo::new { bar: 42, baz: "Rust Wasm" };
JsValue::from_serde(&foo).unwrap()

}



The Rust side
extern crate wasm_bindgen;
use gloo_utils::format::JsValueSerdeExt;
use serde::{Deserialize, Serialize};
use wasm_bindgen::prelude::*;
/// ...
#[derive(Serialize, Deserialize)]
struct Foo {

bar: u32,
baz: String,

}
#[wasm_bindgen]
pub fn some_fun(data: JsValue) -> JsValue {

/// ...
let foo = Foo::new { bar: 42, baz: "Rust Wasm" };
JsValue::from_serde(&foo).unwrap()

}



The JavaScript side

import { some_fun } from "./rs/pkg";

/* ... */
const res = some_fun({ woopWoop: 1337 });
console.info(res);

/* ... */

But that is synchronous and blocking!

https://rustwasm.github.io/wasm‑bindgen/reference/js‑promises‑and‑
rust‑futures.html

https://rustwasm.github.io/wasm‑
bindgen/api/wasm_bindgen_futures/

https://rustwasm.github.io/wasm-bindgen/reference/js-promises-and-rust-futures.html
https://rustwasm.github.io/wasm-bindgen/reference/js-promises-and-rust-futures.html
https://rustwasm.github.io/wasm-bindgen/api/wasm_bindgen_futures/
https://rustwasm.github.io/wasm-bindgen/api/wasm_bindgen_futures/


The JavaScript side

import { some_fun } from "./rs/pkg";

/* ... */
const res = some_fun({ woopWoop: 1337 });
console.info(res);

/* ... */

But that is synchronous and blocking!

https://rustwasm.github.io/wasm‑bindgen/reference/js‑promises‑and‑
rust‑futures.html

https://rustwasm.github.io/wasm‑
bindgen/api/wasm_bindgen_futures/

https://rustwasm.github.io/wasm-bindgen/reference/js-promises-and-rust-futures.html
https://rustwasm.github.io/wasm-bindgen/reference/js-promises-and-rust-futures.html
https://rustwasm.github.io/wasm-bindgen/api/wasm_bindgen_futures/
https://rustwasm.github.io/wasm-bindgen/api/wasm_bindgen_futures/


The JavaScript side

import { some_fun } from "./rs/pkg";

/* ... */
const res = some_fun({ woopWoop: 1337 });
console.info(res);

/* ... */

But that is synchronous and blocking!

https://rustwasm.github.io/wasm‑bindgen/reference/js‑promises‑and‑
rust‑futures.html

https://rustwasm.github.io/wasm‑
bindgen/api/wasm_bindgen_futures/

https://rustwasm.github.io/wasm-bindgen/reference/js-promises-and-rust-futures.html
https://rustwasm.github.io/wasm-bindgen/reference/js-promises-and-rust-futures.html
https://rustwasm.github.io/wasm-bindgen/api/wasm_bindgen_futures/
https://rustwasm.github.io/wasm-bindgen/api/wasm_bindgen_futures/


Rust Wasm in Fiedka



What is Fiedka again?

Fiedka is the graphical desktop
firmware analyzer and editor.

https://fiedka.app

The current backend is written in
Go and runs in Web Assembly.

Rust support is being added because there are tools written in it, e.g.,
Romulan: https://github.com/system76/romulan

https://fiedka.app
https://github.com/system76/romulan


What is Fiedka again?

Fiedka is the graphical desktop
firmware analyzer and editor.

https://fiedka.app

The current backend is written in
Go and runs in Web Assembly.

Rust support is being added because there are tools written in it, e.g.,
Romulan: https://github.com/system76/romulan

https://fiedka.app
https://github.com/system76/romulan


What is Fiedka again?

Fiedka is the graphical desktop
firmware analyzer and editor.

https://fiedka.app

The current backend is written in
Go and runs in Web Assembly.

Rust support is being added because there are tools written in it, e.g.,
Romulan: https://github.com/system76/romulan

https://fiedka.app
https://github.com/system76/romulan


What is Fiedka again?

Fiedka is the graphical desktop
firmware analyzer and editor.

https://fiedka.app

The current backend is written in
Go and runs in Web Assembly.

Rust support is being added because there are tools written in it, e.g.,
Romulan: https://github.com/system76/romulan

https://fiedka.app
https://github.com/system76/romulan


DEMO: Rust Wasm in Fiedka



Rust Wasm in dtvis



What is dtvis?

dtvis is a new project ‑ a DeviceTree1 visualizer.

https://github.com/platform‑system‑interface/dtvis

1https://devicetree.org

https://github.com/platform-system-interface/dtvis
https://devicetree.org


What is dtvis?
dtvis is a new project ‑ a DeviceTree1 visualizer.

https://github.com/platform‑system‑interface/dtvis

1https://devicetree.org

https://github.com/platform-system-interface/dtvis
https://devicetree.org


What is dtvis?
dtvis is a new project ‑ a DeviceTree1 visualizer.

https://github.com/platform‑system‑interface/dtvis
1https://devicetree.org

https://github.com/platform-system-interface/dtvis
https://devicetree.org


…so what is a Device Tree?

IEEE 12752 Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices / Open Firmware3

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

2https://standards.ieee.org/ieee/1275/1932/
3https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


…so what is a Device Tree?

IEEE 12752 Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices / Open Firmware3

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

2https://standards.ieee.org/ieee/1275/1932/
3https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


…so what is a Device Tree?

IEEE 12752 Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices / Open Firmware3

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

2https://standards.ieee.org/ieee/1275/1932/
3https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


…so what is a Device Tree?

IEEE 12752 Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices / Open Firmware3

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

2https://standards.ieee.org/ieee/1275/1932/
3https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


…so what is a Device Tree?

IEEE 12752 Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices / Open Firmware3

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

2https://standards.ieee.org/ieee/1275/1932/
3https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


…so what is a Device Tree?

IEEE 12752 Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices / Open Firmware3

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

2https://standards.ieee.org/ieee/1275/1932/
3https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


…so what is a Device Tree?

IEEE 12752 Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices / Open Firmware3

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

2https://standards.ieee.org/ieee/1275/1932/
3https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


Previous attempts
There were discussions on tooling at Linux Plumbers4, partially stalled.

Component Inspector (by Freescale, now NXP)
▶ proprietary, closed source Eclipse plugin
▶ was part of QorIQ Configuration Suite, no longer available

https://github.com/dev‑0x7C6/fdt‑viewer
▶ mixed tree + hex/text viewer, C++ + Qt
▶ supports dtb, dtbo (overlay) and itb (FIT image)

https://github.com/bmx666/dtv‑demo
▶ “RFC ‑ DTV (Device Tree Visualiser)” onmailing list5
▶ dt_s_ only, more of a text editor, Python + Qt6

VS Code plugin plorefice.devicetree6
▶ syntax highlighting + collapsing
▶ could be enhanced with dtvis :‑)

4https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf

5https://www.spinics.net/lists/devicetree‑spec/msg00950.html
6https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree

https://github.com/dev-0x7C6/fdt-viewer
https://github.com/bmx666/dtv-demo
https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
https://www.spinics.net/lists/devicetree-spec/msg00950.html
https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree


Previous attempts
There were discussions on tooling at Linux Plumbers4, partially stalled.

Component Inspector (by Freescale, now NXP)
▶ proprietary, closed source Eclipse plugin
▶ was part of QorIQ Configuration Suite, no longer available

https://github.com/dev‑0x7C6/fdt‑viewer
▶ mixed tree + hex/text viewer, C++ + Qt
▶ supports dtb, dtbo (overlay) and itb (FIT image)

https://github.com/bmx666/dtv‑demo
▶ “RFC ‑ DTV (Device Tree Visualiser)” onmailing list5
▶ dt_s_ only, more of a text editor, Python + Qt6

VS Code plugin plorefice.devicetree6
▶ syntax highlighting + collapsing
▶ could be enhanced with dtvis :‑)

4https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf

5https://www.spinics.net/lists/devicetree‑spec/msg00950.html
6https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree

https://github.com/dev-0x7C6/fdt-viewer
https://github.com/bmx666/dtv-demo
https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
https://www.spinics.net/lists/devicetree-spec/msg00950.html
https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree


Previous attempts
There were discussions on tooling at Linux Plumbers4, partially stalled.

Component Inspector (by Freescale, now NXP)
▶ proprietary, closed source Eclipse plugin
▶ was part of QorIQ Configuration Suite, no longer available

https://github.com/dev‑0x7C6/fdt‑viewer
▶ mixed tree + hex/text viewer, C++ + Qt
▶ supports dtb, dtbo (overlay) and itb (FIT image)

https://github.com/bmx666/dtv‑demo
▶ “RFC ‑ DTV (Device Tree Visualiser)” onmailing list5
▶ dt_s_ only, more of a text editor, Python + Qt6

VS Code plugin plorefice.devicetree6
▶ syntax highlighting + collapsing
▶ could be enhanced with dtvis :‑)

4https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
5https://www.spinics.net/lists/devicetree‑spec/msg00950.html

6https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree

https://github.com/dev-0x7C6/fdt-viewer
https://github.com/bmx666/dtv-demo
https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
https://www.spinics.net/lists/devicetree-spec/msg00950.html
https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree


Previous attempts
There were discussions on tooling at Linux Plumbers4, partially stalled.

Component Inspector (by Freescale, now NXP)
▶ proprietary, closed source Eclipse plugin
▶ was part of QorIQ Configuration Suite, no longer available

https://github.com/dev‑0x7C6/fdt‑viewer
▶ mixed tree + hex/text viewer, C++ + Qt
▶ supports dtb, dtbo (overlay) and itb (FIT image)

https://github.com/bmx666/dtv‑demo
▶ “RFC ‑ DTV (Device Tree Visualiser)” onmailing list5
▶ dt_s_ only, more of a text editor, Python + Qt6

VS Code plugin plorefice.devicetree6
▶ syntax highlighting + collapsing
▶ could be enhanced with dtvis :‑)

4https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
5https://www.spinics.net/lists/devicetree‑spec/msg00950.html
6https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree

https://github.com/dev-0x7C6/fdt-viewer
https://github.com/bmx666/dtv-demo
https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
https://www.spinics.net/lists/devicetree-spec/msg00950.html
https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree


Previous attempts
There were discussions on tooling at Linux Plumbers4, partially stalled.

Component Inspector (by Freescale, now NXP)
▶ proprietary, closed source Eclipse plugin
▶ was part of QorIQ Configuration Suite, no longer available

https://github.com/dev‑0x7C6/fdt‑viewer
▶ mixed tree + hex/text viewer, C++ + Qt
▶ supports dtb, dtbo (overlay) and itb (FIT image)

https://github.com/bmx666/dtv‑demo
▶ “RFC ‑ DTV (Device Tree Visualiser)” onmailing list5
▶ dt_s_ only, more of a text editor, Python + Qt6

VS Code plugin plorefice.devicetree6
▶ syntax highlighting + collapsing
▶ could be enhanced with dtvis :‑)

4https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
5https://www.spinics.net/lists/devicetree‑spec/msg00950.html
6https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree

https://github.com/dev-0x7C6/fdt-viewer
https://github.com/bmx666/dtv-demo
https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
https://www.spinics.net/lists/devicetree-spec/msg00950.html
https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree


DEMO: Rust Wasm in dtvis



Related

Fiedka the Firmware Editor (OSFC 2021)
https://www.osfc.io/2021/talks/fiedka‑the‑firmware‑editor/

Platform System Interface ‑ Design und Evaluation holistischer
Computerarchitektur (rC3 2022)
https://media.ccc.de/v/fire‑shonks‑2022‑49154‑platform‑system‑
interface‑design‑und‑evaluation‑holistischer‑computerarchitektur

Hack the Gadget! (MRMCD 2023)
https://talks.mrmcd.net/2023/talk/SLLVT8/

https://www.osfc.io/2021/talks/fiedka-the-firmware-editor/
https://media.ccc.de/v/fire-shonks-2022-49154-platform-system-interface-design-und-evaluation-holistischer-computerarchitektur
https://media.ccc.de/v/fire-shonks-2022-49154-platform-system-interface-design-und-evaluation-holistischer-computerarchitektur
https://talks.mrmcd.net/2023/talk/SLLVT8/


Thank you! :)



Follow Me

Daniel Maslowski

https://github.com/orangecms
https://twitter.com/orangecms
https://mastodon.social/@cyrevolt
https://youtube.com/@cyrevolt
https://twitch.tv/cyrevolt

https://metaspora.org/rust‑wasm‑electron‑labortage2023.pdf

License: CC BY 4.0 https://creativecommons.org/licenses/by/4.0/

https://github.com/orangecms
https://twitter.com/orangecms
https://mastodon.social/@cyrevolt
https://youtube.com/@cyrevolt
https://twitch.tv/cyrevolt
https://metaspora.org/rust-wasm-electron-labortage2023.pdf
https://creativecommons.org/licenses/by/4.0/

	Rust and WebAssembly
	Rust Wasm in Fiedka
	DEMO: Rust Wasm in Fiedka
	Rust Wasm in dtvis
	DEMO: Rust Wasm in dtvis
	Thank you! :)

