
LinuxBoot

Let Linux do it

Daniel Maslowski

Agenda

▶ Motivation
▶ LinuxBoot Concept
▶ UEFI Integration
▶ Implementations
▶ Future Work

Motivation

Firmware now vs back then
▶ 1999: birth of coreboot as LinuxBIOS

▶ open source x86 firmware \o/
▶ 2004: Tiano initial release by Intel

▶ now EDK I/II, maintained by UEFI community
▶ 2014: Intel Haswell release

▶ requires proprietary MRC (Memory Reference Code) binary
▶ later on: FSP (Firmware Support Package)

▶ 2014: AMD Generic Encapsulated Software Architecture (AGESA)
lockdown

▶ binary only since then
▶ was initially open sourced for coreboot in early 2011
▶ an open laptop would have been nice

▶ 2019: UDF (UEFI Dumpster Fire™)
▶ criticized by many people
▶ for many years

neglected: Intel ME, AMD PSP, ARM and other SoCs

https://doc.coreboot.org/northbridge/intel/haswell/mrc.bin.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/firmware-support-package-brief.pdf
https://mail.coreboot.org/pipermail/coreboot/2014-November/078892.html
http://openlunchbox.com/open-laptop/
https://twitter.com/xjamesmorris/status/1179825267939786752
https://altelectron.org.uk/notice/9hJJFGA7fbQAAcQJWa
http://allsoftwaresucks.blogspot.com/2013/04/uefi-and-arm.html

State of security

▶ update processes are often insecure
▶ vendors and firmware projects take no responsibility
▶ great summary by Alex Matrosov

https://www.youtube.com/watch?v=gsp1cCR7oOY

Right to repair bill

▶ vendors still propose security by obscurity
▶ although known to be pointless against sophisticated attackers

▶ repair technicians suffer from propretiary information
▶ consumers and researchers alike

https://www.youtube.com/watch?v=W47nB65zcmk

Platform Initialization (PI)
Platform Initialization Firmware Phases

EDK II - stages

time

coreboot - stages

Security
(SEC)

Pre-EFI
Initialization Environment

(PEI)

Driver Execution
Environment

(DXE)

Boot Device Selection
(BDS)

bootblock romstage
verstage
(optional)

postcar
(x86 only)

ramstage

SMM
(x86 only)

payload

Assembly

Cache-As-RAM

DRAM

C

ADA SPARK (x86 only)

coreboot
source languages

code/heap
memory location

BL31
(ARM only)

Power on

basic platform initialization: CPU, chipset, RAM (PEI / romstage)

▶ has to be rerun similarly for S3 resume

https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
https://reverse.put.as/2015/07/01/reversing-prince-harmings-kiss-of-death/

LinuxBoot Concept

LinuxBoot

▶ Linux kernel + initramfs in SPI flash
▶ can run on top of

▶ coreboot: as payload
▶ U-Boot
▶ vendor UEFI firmware: remove DXEs, build Linux with EFI support

=> approach rather than implementation

Integrations

Constraints

▶ only fewmegabytes of space (8 to 16 common)
▶ build minimum kernel

▶ disk drivers
▶ filesystems
▶ possibly networking

▶ build basic initramfs
▶ core utilities like ls, cat, etc
▶ bootloader(s) - need to boot an OS ;)

=> very similar to OpenWrt, except for bootloader instead of routing tools

UEFI Integration

UEFI binary format

PE32 / PE32+ format, without symbol tables

Three types:

▶ applications
▶ OS loaders
▶ utilities

▶ boot service drivers
▶ disk drivers
▶ network drivers

▶ runtime drivers
▶ may remain loaded while OS is running

=> replace applications and boot service drivers with LinuxBoot

https://wiki.osdev.org/UEFI#Binary_Format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

Tools

▶ Fiano
▶ utk with DXE cleaner

▶ UEFITool

https://github.com/linuxboot/fiano
https://github.com/linuxboot/fiano#dxe-cleaner
https://github.com/LongSoft/UEFITool

Implementations

u-root

▶ initramfs tool written in Go
▶ utilities like busybox (ls, cat, …)
▶ offers bootloaders (SystemBoot)

https://u-root.tk/

Try out u-root in QEMU

go get github.com/u-root/u-root
build an initramfs
GOOS=linux \

~/go/bin/u-root -build=bb -o /tmp/initramfs.linux_amd64.cpio
get a kernel
MIRROR="http://mirror.rackspace.com" REL="2019.10.01" \

wget "$MIRROR/archlinux/iso/$REL/arch/boot/x86_64/vmlinuz"
run it :)
qemu-system-x86_64 -kernel vmlinuz \

-initrd /tmp/initramfs.linux_amd64.cpio

u-root demo

Heads

▶ authenticated / measured boot

https://trmm.net/Heads_threat_model

u-bmc

▶ u-root for BMCs
▶ alternative to OpenBMC

Project OpenBMC u-bmc

Languages C++, Python Go
Tooling Yocto, OpenEmbedded u-root
Kernel OpenBMC Linux fork OpenBMC Linux fork
Init systemd
IPC D-Bus
RPC IPMI, REST gRPC
Metrics OpenMetrics

Future Work

CHIPSEC blacklist in MFT

▶ UEFI Forum openly discussed security measures for firmware
development and answered questions from participants

Q: Can consumers audit the firmware? If so, how?

A: There are a variety of tools that can allow a consumer to
inspect firmware images. CHIPSEC and UEFI Tool are two tools
that can analyze a firmware image and allow a consumer to
inspect its contents. CHIPSEC has a blacklist of UEFI modules
which include a tool that will check a ROM image for blacklisted
modules.

▶ Mimoja released the MimojaFirmwareToolkit (MFT)
https://firmware.doctor

▶ integrate CHIPSEC blacklist in analysis?
▶ contributions are welcome ;)

https://uefi.org/node/4020
https://firmware.doctor
https://firmware.doctor/contribute

ACME for firmware update PKI

Since firmware updates are such an issue:

▶ we had a very similar issue on the web with secure communication
▶ leverage the ACME protocol (Let’s Encrypt) also for firmware?
▶ create issues on TianoCore GitHub org for discussion

https://github.com/tianocore/

Questions?

Thanks! :)

	Motivation
	LinuxBoot Concept
	UEFI Integration
	Implementations
	Future Work
	Questions?
	Thanks! :)

