Speedy Distro Porting via the cpu Command

Daniel Maslowski

Introduction

Thank you, it's good to be back!

Hi, I'm Daniel!

- professional app and web developer
- been to openSUSE Conference many times
- hacking on firmware and operating systems
- started to write code in Go and Rust

Thank you, it's good to be back!

Hi, I'm Daniel!

- professional app and web developer
- been to openSUSE Conference many times
- hacking on firmware and operating systems
- started to write code in Go and Rust

Remember? In 2019, we talked about open source firmware!

Thank you, it's good to be back!

Hi, I'm Daniel!

- professional app and web developer
- been to openSUSE Conference many times
- hacking on firmware and operating systems
- started to write code in Go and Rust

Remember? In 2019, we talked about open source firmware!

Agenda

Distributing an OS
Porting Firmware
Speeding Things up

Distributing an OS

Building Software

))))

Building Software

For distribution, software needs to be built, by the distro or the end user.

Building Software

For distribution, software needs to be built, by the distro or the end user.

Building software requires toolchains, meeting assumptions, patching.

Hello OBS!

Hello OBS!

Building as a Service - BaaS

Processors and Architectures

Software on lower levels involves platform specifics.

¹https://azrael.digipen.edu/~mmead/www/Courses/CS180/OSOverview.html

Software on lower levels involves platform specifics.

The kernel is commonly the lowest level part of an operating system¹.

¹https://azrael.digipen.edu/~mmead/www/Courses/CS180/OSOverview.html

Software on lower levels involves platform specifics.

The kernel is commonly the lowest level part of an operating system¹.

One kernel, one distro image per architecture.

¹https://azrael.digipen.edu/~mmead/www/Courses/CS180/OSOverview.html

Wait, what happened?

-	O A https://download opensuse.org/ports/riscv/tumbleweed/images/	ជ	₹	»	=
9	Download Shortcuts *				
	ے Download / ports / riscv / tumbleweed / images				
	Name Last modified		Size		
	t Parent Directory				
	openSUSE-Tumbleweed-RISC-V-E20-efi.riscv64-2022.04.29-Build1.34.raw.xz 31-May-2022 1	B:25	1.6	G	
	b openSUSE-Tumbleweed-RISC-V-E20-efi.riscv64-2022.04.29-Build1.34.raw.xz.sha256 31-May-2022 1	B:25	13	7	
	b openSUSE-Tumbleweed-RISC-V-E20-efi.riscv64-2022.04.29-Build1.34.raw.xz.sha256.asc 31-May-2022 1	B:25	48	1	
	popenSUSE-Tumbleweed-RISC-V-E20-hifiveunmatched.riscv64-2022.04.29-Build1.36.raw.xz 31-May-2022 1	9:29	1.6	G	
	b openSUSE-Tumbleweed-RISC-V-E20-hifiveunmatched.riscv64-2022.04.29-Build1.36.raw.xz.sha256 31-May-2022 1	9:29	14	9	
	openSUSE-Tumbleweed-RISC-V-E20-hifiveunmatched.riscv64-2022.04.29-Build1.36.raw.xz.sha256.asc 31-May-2022 1	9:29	48	31	
	openSUSE-Tumbleweed-RISC-V-E20.riscv64-rootfs.riscv64-2022.04.29-Build1.34.tar.xz 31-May-2022 1	B:11	1.5	G	
	openSUSE-Tumbleweed-RISC-V-E20.riscv64-rootfs.riscv64-2022.04.29-Build1.34.tar.xz.sha256 31-May-2022 1	B:11	14	8	
	penSUSE-Tumbleweed-RISC-V-E20.riscv64-rootfs.riscv64-2022.04.29-Build1.34.tar.xz.sha256.asc 31-May-2022 1	B:11	48	31	

Revisting Assumptions

Revisting Assumptions

Many chip vendors and multiple architectures imply fragmentation.

Revisting Assumptions

Many chip vendors and multiple architectures imply fragmentation.

What may an OS safely assume? (our core question)

Porting Firmware

Hello RISC-V!

Hello RISC-V!

tools/mkimage -T sunxi_toc1 -d toc1.cfg u-boot.toc1

Hello RISC-V!

tools/mkimage -T sunxi_toc1 -d toc1.cfg_u-boot.toc1

Hello, RISC-V?

https://fedoraproject.org/wiki/Architectures/RISC-V/Allwinner

Why, RISC-V?

https://rvspace.org/en/Product/VisionFive/ Technical_Documents/VisionFive_Single_ Board_Computer_Quick_Start_Guide

Why, RISC-V?

https://rvspace.org/en/Product/VisionFive/ Technical_Documents/VisionFive_Single_ Board_Computer_Quick_Start_Guide

OREBOOT

We are working on a simpler oreboot port for the JH7100 / VisionFive. :)

Speeding Things up

Offering LinuxBoot

Offering LinuxBoot

Take firmare for granted. Focus on the OS itself!

Offering LinuxBoot

Take firmare for granted. Focus on the OS itself!

SPI Flash

oreboot and LinuxBoot

oreboot and LinuxBoot

oreboot initializes your hardware and executes a payload.

oreboot and LinuxBoot

oreboot initializes your hardware and executes a payload.

LinuxBoot provides you with a Linux environment, including boot loaders.

LinuxBoot and cpu

LinuxBoot and cpu

Include cpud, the cpu daemon, in your LinuxBoot environment

LinuxBoot and cpu

Include cpud, the cpu daemon, in your LinuxBoot environment Now do what you want and have a lot of fun!

Think of a little stub which lets you access and run anything on a remote that you bring from your host system.

Think of a little stub which lets you access and run anything on a remote that you bring from your host system.

Simple command

Use cpu instead of moving an SD card between host and test device!

Think of a little stub which lets you access and run anything on a remote that you bring from your host system.

Simple command

Use cpu instead of moving an SD card between host and test device! cpu target-device ./program-to-test --with-some-args

Think of a little stub which lets you access and run anything on a remote that you bring from your host system.

Simple command

Use cpu instead of moving an SD card between host and test device! cpu target-device ./program-to-test --with-some-args

Advanced (just as simple) You can even kexec over cpu. :-)

Think of a little stub which lets you access and run anything on a remote that you bring from your host system.

Simple command

Use cpu instead of moving an SD card between host and test device! cpu target-device ./program-to-test --with-some-args

Advanced (just as simple) You can even kexec over cpu.:-) cpu target-device ./kexec ./your-next-kernel

$\operatorname{cpu} \mathsf{DEMO}$

Leveraging cpu for Distro Testing

Leveraging cpu for Distro Testing

Use LinuxBoot to define a well-known system state. Attach to network.

Deploy Linux with cpud as the init (cpukernel).

Deploy Linux with cpud as the init (*cpukernel*). Now, build your distro. Use NFS root and kexec into your new kernel.

Deploy Linux with cpud as the init (*cpukernel*). Now, build your distro. Use NFS root and kexec into your new kernel. Does it boot? Yes -> yay! Nope -> you found a bug!

Hey openQA!

Constant and the second second

openSUSE Tumbleweed

- Build20220601 (about 7 hours ago)
- Build20220531 (a day ago) #
- Build20220530 (2 days ago) #

openSUSE Tumbleweed AArch64

- Build20220530 (2 days ago) 🗫
- Build20220528 (<u>3 days ago</u>) 🙊
- Build20220523 (9 days ago) 🙊

Life is too short for manual testing!

Hey openQA!

Velcome to openQA Life is too short for manual testing!

openSUSE Tumbleweed

- Build20220601 (about 7 hours ago)
- Build20220531 (a day ago) #
- Build20220530 (2 days ago) #

openSUSE Tumbleweed AArch64

- Build20220530 (2 days ago) 🗫
- Build20220528 (3 days ago) 🙊
- Build20220523 (9 days ago) 🙊

Life is too short for manual testing!

Where is RISC-V? Let's make it happen! :-)

Testing Strategies and Setup

Testing Strategies and Setup

test different build setup variations (e.g., cmdline args)
assert on serial console and video output
reset when done with each case (hard reset)

Testing Strategies and Setup

test different build setup variations (e.g., cmdline args)

- assert on serial console and video output
- reset when done with each case (hard reset)

Requirements

second piece of hardware for monitoring, reset, instrumentation

- HDMI capture, USB-HDMI, VNC etc
- connect to UART
- hook up GPIO to reset
- e.g., Raspberry Pi, 3mdeb RTE, DIY...

some glue logic in build service (CI)

Try it out!

buas

Join our workshop at 17:00 in Seminarraum 2

Preparation: Install either Docker or QEMU plus (optionally) Go 1.18.

dama@orangelemp	<pre>~/P/L/l/m/i/generic (main)> ~/firmware/ipc/arm-cpu/bin/cpu -sp 23 -key _/.ssh/cpu rsa</pre>					
-timeout9p 3s 192.168.11.245 cat /proc/cpuinfo						
processor	: 0					
vendor_id	: GenuineIntel					
cpu family	: 6					
nodel	: 122					
nodel name	: Intel(R) Celeron(R) J4125 CPU @ 2.00GHz					
stepping	: 8					
nicrocode	: 0xla					
cpu MHz	: 1996.800					
cache size	: 4096 KB					
physical id	: 0					
siblings	: 4					
core id	: 0					
cpu cores	: 4					
apicid	: 0					
initial apicid	: 0					
fpu	: yes					
fpu_exception	: yes					
cpuid level	: 24					
мр	: yes					
flags	: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts					
acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bt						
s rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni_pclmulqdq dtes64 monitor ds_						
cpl vmx est tm2 ssse3 sdbg cx16 xtpr pdcm sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsa						
ve rdrand lahf_lm 3dnowprefetch cpuid_fault cat_l2 cdp_l2 ssbd ibrs ibpb stibp ibrs_enhanced tpr_shado						
w vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust sgx smep erms mpx rdt_a rdseed clflushopt inte						
_pt sha_ni xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts umip rdpid sgx_lc md_clear arch_cap						
bilities						
<pre>mx flags : vnmi preemption_timer posted_intr invvpid ept_x_only ept_ad ept_1gb flexpriority api</pre>						
cv tsc_offset v	tpr mtf vapic ept vpid unrestricted_guest vapic_reg vid ple shadow_vmcs ept_mode_based_					
exectsc scaling						

