
Speedy Distro Porting via the cpu Command

Daniel Maslowski



Introduction



Thank you, it’s good to be back!

Hi, I’m Daniel!
▶ professional app and web developer
▶ been to openSUSE Conference many times
▶ hacking on firmware and operating systems
▶ started to write code in Go and Rust

Remember? In 2019, we talked about open source firmware!



Thank you, it’s good to be back!

Hi, I’m Daniel!
▶ professional app and web developer
▶ been to openSUSE Conference many times
▶ hacking on firmware and operating systems
▶ started to write code in Go and Rust

Remember? In 2019, we talked about open source firmware!



Thank you, it’s good to be back!

Hi, I’m Daniel!
▶ professional app and web developer
▶ been to openSUSE Conference many times
▶ hacking on firmware and operating systems
▶ started to write code in Go and Rust

Remember? In 2019, we talked about open source firmware!



Agenda

▶ Distributing an OS
▶ Porting Firmware
▶ Speeding Things up



Distributing an OS



Building Software

For distribution, software needs to be built, by the distro or the end user.

Building software requires toolchains, meeting assumptions, patching.



Building Software

For distribution, software needs to be built, by the distro or the end user.

Building software requires toolchains, meeting assumptions, patching.



Building Software

For distribution, software needs to be built, by the distro or the end user.

Building software requires toolchains, meeting assumptions, patching.



Hello OBS!

Building as a Service ‑ BaaS



Hello OBS!

Building as a Service ‑ BaaS



Processors and Architectures

Software on lower levels involves platform specifics.

The kernel is commonly the lowest level part of an operating system1.

One kernel, one distro image per architecture.

1https://azrael.digipen.edu/~mmead/www/Courses/CS180/OSOverview.html

https://azrael.digipen.edu/~mmead/www/Courses/CS180/OSOverview.html


Processors and Architectures

Software on lower levels involves platform specifics.

The kernel is commonly the lowest level part of an operating system1.

One kernel, one distro image per architecture.

1https://azrael.digipen.edu/~mmead/www/Courses/CS180/OSOverview.html

https://azrael.digipen.edu/~mmead/www/Courses/CS180/OSOverview.html


Processors and Architectures

Software on lower levels involves platform specifics.

The kernel is commonly the lowest level part of an operating system1.

One kernel, one distro image per architecture.

1https://azrael.digipen.edu/~mmead/www/Courses/CS180/OSOverview.html

https://azrael.digipen.edu/~mmead/www/Courses/CS180/OSOverview.html


Processors and Architectures

Software on lower levels involves platform specifics.

The kernel is commonly the lowest level part of an operating system1.

One kernel, one distro image per architecture.

1https://azrael.digipen.edu/~mmead/www/Courses/CS180/OSOverview.html

https://azrael.digipen.edu/~mmead/www/Courses/CS180/OSOverview.html


Wait, what happened?



Revisting Assumptions

Many chip vendors andmultiple architectures imply fragmentation.

What may an OS safely assume? (our core question)



Revisting Assumptions

Many chip vendors andmultiple architectures imply fragmentation.

What may an OS safely assume? (our core question)



Revisting Assumptions

Many chip vendors andmultiple architectures imply fragmentation.

What may an OS safely assume? (our core question)



Porting Firmware



Hello RISC‑V!

Operating System



Hello RISC‑V!

Operating System



Hello RISC‑V!

Operating System



Hello, RISC‑V?

https://fedoraproject.org/wiki/Architectures/RISC‑V/Allwinner

https://fedoraproject.org/wiki/Architectures/RISC-V/Allwinner


Why, RISC‑V?
https://rvspace.org/en/Product/VisionFive/
Technical_Documents/VisionFive_Single_
Board_Computer_Quick_Start_Guide

We are working on a simpler oreboot
port for the JH7100 / VisionFive. :)

https://rvspace.org/en/Product/VisionFive/Technical_Documents/VisionFive_Single_Board_Computer_Quick_Start_Guide
https://rvspace.org/en/Product/VisionFive/Technical_Documents/VisionFive_Single_Board_Computer_Quick_Start_Guide
https://rvspace.org/en/Product/VisionFive/Technical_Documents/VisionFive_Single_Board_Computer_Quick_Start_Guide


Why, RISC‑V?
https://rvspace.org/en/Product/VisionFive/
Technical_Documents/VisionFive_Single_
Board_Computer_Quick_Start_Guide

We are working on a simpler oreboot
port for the JH7100 / VisionFive. :)

https://rvspace.org/en/Product/VisionFive/Technical_Documents/VisionFive_Single_Board_Computer_Quick_Start_Guide
https://rvspace.org/en/Product/VisionFive/Technical_Documents/VisionFive_Single_Board_Computer_Quick_Start_Guide
https://rvspace.org/en/Product/VisionFive/Technical_Documents/VisionFive_Single_Board_Computer_Quick_Start_Guide


Speeding Things up



Offering LinuxBoot

Take firmare for granted. Focus on the OS itself!

https://www.linuxboot.org/

https://www.linuxboot.org/


Offering LinuxBoot
Take firmare for granted. Focus on the OS itself!

https://www.linuxboot.org/

https://www.linuxboot.org/


Offering LinuxBoot
Take firmare for granted. Focus on the OS itself!

https://www.linuxboot.org/

https://www.linuxboot.org/


oreboot and LinuxBoot

oreboot

oreboot initializes your hardware and executes a payload.

LinuxBoot provides you with a Linux environment, including boot loaders.



oreboot and LinuxBoot

oreboot

oreboot initializes your hardware and executes a payload.

LinuxBoot provides you with a Linux environment, including boot loaders.



oreboot and LinuxBoot

oreboot

oreboot initializes your hardware and executes a payload.

LinuxBoot provides you with a Linux environment, including boot loaders.



LinuxBoot and cpu

Include cpud, the cpu daemon, in your LinuxBoot environment
Now do what you want and have a lot of fun!



LinuxBoot and cpu

Include cpud, the cpu daemon, in your LinuxBoot environment

Now do what you want and have a lot of fun!



LinuxBoot and cpu

Include cpud, the cpu daemon, in your LinuxBoot environment
Now do what you want and have a lot of fun!



Okay, cpu ‑ but what is it?

Think of a little stub which lets you access and run anything on a remote that
you bring from your host system.

Simple command
Use cpu instead of moving an SD card between host and test device!
cpu target-device ./program-to-test --with-some-args

Advanced (just as simple)
You can even kexec over cpu. :‑)
cpu target-device ./kexec ./your-next-kernel



Okay, cpu ‑ but what is it?

Think of a little stub which lets you access and run anything on a remote that
you bring from your host system.

Simple command
Use cpu instead of moving an SD card between host and test device!
cpu target-device ./program-to-test --with-some-args

Advanced (just as simple)
You can even kexec over cpu. :‑)
cpu target-device ./kexec ./your-next-kernel



Okay, cpu ‑ but what is it?

Think of a little stub which lets you access and run anything on a remote that
you bring from your host system.

Simple command
Use cpu instead of moving an SD card between host and test device!

cpu target-device ./program-to-test --with-some-args

Advanced (just as simple)
You can even kexec over cpu. :‑)
cpu target-device ./kexec ./your-next-kernel



Okay, cpu ‑ but what is it?

Think of a little stub which lets you access and run anything on a remote that
you bring from your host system.

Simple command
Use cpu instead of moving an SD card between host and test device!
cpu target-device ./program-to-test --with-some-args

Advanced (just as simple)
You can even kexec over cpu. :‑)
cpu target-device ./kexec ./your-next-kernel



Okay, cpu ‑ but what is it?

Think of a little stub which lets you access and run anything on a remote that
you bring from your host system.

Simple command
Use cpu instead of moving an SD card between host and test device!
cpu target-device ./program-to-test --with-some-args

Advanced (just as simple)
You can even kexec over cpu. :‑)

cpu target-device ./kexec ./your-next-kernel



Okay, cpu ‑ but what is it?

Think of a little stub which lets you access and run anything on a remote that
you bring from your host system.

Simple command
Use cpu instead of moving an SD card between host and test device!
cpu target-device ./program-to-test --with-some-args

Advanced (just as simple)
You can even kexec over cpu. :‑)
cpu target-device ./kexec ./your-next-kernel



cpu DEMO



Leveraging cpu for Distro Testing

Use LinuxBoot to define a well‑known system state. Attach to network.
Power on the board, and check for readiness on the console.

Deploy Linux with cpud as the init (cpukernel).
Now, build your distro. Use NFS root and kexec into your new kernel.
Does it boot? Yes ‑> yay! Nope ‑> you found a bug!



Leveraging cpu for Distro Testing

Use LinuxBoot to define a well‑known system state. Attach to network.

Power on the board, and check for readiness on the console.

Deploy Linux with cpud as the init (cpukernel).
Now, build your distro. Use NFS root and kexec into your new kernel.
Does it boot? Yes ‑> yay! Nope ‑> you found a bug!



Leveraging cpu for Distro Testing

Use LinuxBoot to define a well‑known system state. Attach to network.
Power on the board, and check for readiness on the console.

Deploy Linux with cpud as the init (cpukernel).
Now, build your distro. Use NFS root and kexec into your new kernel.
Does it boot? Yes ‑> yay! Nope ‑> you found a bug!



Leveraging cpu for Distro Testing

Use LinuxBoot to define a well‑known system state. Attach to network.
Power on the board, and check for readiness on the console.

Deploy Linux with cpud as the init (cpukernel).

Now, build your distro. Use NFS root and kexec into your new kernel.
Does it boot? Yes ‑> yay! Nope ‑> you found a bug!



Leveraging cpu for Distro Testing

Use LinuxBoot to define a well‑known system state. Attach to network.
Power on the board, and check for readiness on the console.

Deploy Linux with cpud as the init (cpukernel).
Now, build your distro. Use NFS root and kexec into your new kernel.

Does it boot? Yes ‑> yay! Nope ‑> you found a bug!



Leveraging cpu for Distro Testing

Use LinuxBoot to define a well‑known system state. Attach to network.
Power on the board, and check for readiness on the console.

Deploy Linux with cpud as the init (cpukernel).
Now, build your distro. Use NFS root and kexec into your new kernel.
Does it boot? Yes ‑> yay! Nope ‑> you found a bug!



Hey openQA!

Life is too short for manual testing!

Where is RISC‑V? Let’s make it happen! :‑)



Hey openQA!

Life is too short for manual testing!

Where is RISC‑V? Let’s make it happen! :‑)



Testing Strategies and Setup

▶ test different build setup variations (e.g., cmdline args)
▶ assert on serial console and video output
▶ reset when done with each case (hard reset)

Requirements
▶ second piece of hardware for monitoring, reset, instrumentation

▶ HDMI capture, USB‑HDMI, VNC etc
▶ connect to UART
▶ hook up GPIO to reset
▶ e.g., Raspberry Pi, 3mdeb RTE, DIY…

▶ some glue logic in build service (CI)



Testing Strategies and Setup

▶ test different build setup variations (e.g., cmdline args)
▶ assert on serial console and video output
▶ reset when done with each case (hard reset)

Requirements
▶ second piece of hardware for monitoring, reset, instrumentation

▶ HDMI capture, USB‑HDMI, VNC etc
▶ connect to UART
▶ hook up GPIO to reset
▶ e.g., Raspberry Pi, 3mdeb RTE, DIY…

▶ some glue logic in build service (CI)



Testing Strategies and Setup

▶ test different build setup variations (e.g., cmdline args)
▶ assert on serial console and video output
▶ reset when done with each case (hard reset)

Requirements
▶ second piece of hardware for monitoring, reset, instrumentation

▶ HDMI capture, USB‑HDMI, VNC etc
▶ connect to UART
▶ hook up GPIO to reset
▶ e.g., Raspberry Pi, 3mdeb RTE, DIY…

▶ some glue logic in build service (CI)



Try it out!
Join our workshop at 17:00 in Seminarraum 2
Preparation: Install either Docker or QEMU plus (optionally) Go 1.18.


	Introduction
	Distributing an OS
	Porting Firmware
	Speeding Things up
	cpu DEMO

