
Platform System Interface
Design and Evaluation of Computing as a Whole
Daniel Maslowski



Agenda

Designing a Computer
Discovering a Computer
Platforms and Systems
Layers and Interfaces
Research and Development



Designing a Computer



Design and Research (from 1960s on)

Design helps find solutions.

Design deals with complexity.

Design is an iterative process.

Image by Interaction Design Foundation, CC BY‑SA 3.0

https://www.interaction‑design.org/literature/topics/design‑thinking

The Nature of Design Practice and Implications for Interaction Design
Research

http://www.ijdesign.org/index.php/IJDesign/article/viewFile/240/139

https://www.interaction-design.org/literature/topics/design-thinking
http://www.ijdesign.org/index.php/IJDesign/article/viewFile/240/139


Design and Research (from 1960s on)
Design helps find solutions.

Design deals with complexity.

Design is an iterative process.

Image by Interaction Design Foundation, CC BY‑SA 3.0

https://www.interaction‑design.org/literature/topics/design‑thinking

The Nature of Design Practice and Implications for Interaction Design
Research

http://www.ijdesign.org/index.php/IJDesign/article/viewFile/240/139

https://www.interaction-design.org/literature/topics/design-thinking
http://www.ijdesign.org/index.php/IJDesign/article/viewFile/240/139


Design and Research (from 1960s on)
Design helps find solutions.

Design deals with complexity.

Design is an iterative process.

Image by Interaction Design Foundation, CC BY‑SA 3.0

https://www.interaction‑design.org/literature/topics/design‑thinking

The Nature of Design Practice and Implications for Interaction Design
Research

http://www.ijdesign.org/index.php/IJDesign/article/viewFile/240/139

https://www.interaction-design.org/literature/topics/design-thinking
http://www.ijdesign.org/index.php/IJDesign/article/viewFile/240/139


Design and Research (from 1960s on)
Design helps find solutions.

Design deals with complexity.

Design is an iterative process.

Image by Interaction Design Foundation, CC BY‑SA 3.0

https://www.interaction‑design.org/literature/topics/design‑thinking

The Nature of Design Practice and Implications for Interaction Design
Research

http://www.ijdesign.org/index.php/IJDesign/article/viewFile/240/139

https://www.interaction-design.org/literature/topics/design-thinking
http://www.ijdesign.org/index.php/IJDesign/article/viewFile/240/139


Design and Research (from 1960s on)
Design helps find solutions.

Design deals with complexity.

Design is an iterative process.

Image by Interaction Design Foundation, CC BY‑SA 3.0

https://www.interaction‑design.org/literature/topics/design‑thinking

The Nature of Design Practice and Implications for Interaction Design
Research

http://www.ijdesign.org/index.php/IJDesign/article/viewFile/240/139

https://www.interaction-design.org/literature/topics/design-thinking
http://www.ijdesign.org/index.php/IJDesign/article/viewFile/240/139


Dieter Rams’ Ten Principles of Good Design (late 1970s)

“Is my design a good design?” Good design…
1. is innovative.
2. makes a product useful.
3. is aesthetic.
4. makes a product understandable.
5. is honest.
6. is unobtrusive.
7. is long‑lasting.
8. is thorough down to the last detail.
9. is environmentally friendly.

10. is as little design as possible.
https://en.wikipedia.org/wiki/Dieter_Rams

Photo by Vitsoe, CC BY‑SA 3.0,
https://commons.wikimedia.org/wiki/File:Designer‑Dieter_Rams.jpg

https://en.wikipedia.org/wiki/Dieter_Rams
https://commons.wikimedia.org/wiki/File:Designer-Dieter_Rams.jpg


Dieter Rams’ Ten Principles of Good Design (late 1970s)
“Is my design a good design?”

Good design…
1. is innovative.
2. makes a product useful.
3. is aesthetic.
4. makes a product understandable.
5. is honest.
6. is unobtrusive.
7. is long‑lasting.
8. is thorough down to the last detail.
9. is environmentally friendly.

10. is as little design as possible.
https://en.wikipedia.org/wiki/Dieter_Rams

Photo by Vitsoe, CC BY‑SA 3.0,
https://commons.wikimedia.org/wiki/File:Designer‑Dieter_Rams.jpg

https://en.wikipedia.org/wiki/Dieter_Rams
https://commons.wikimedia.org/wiki/File:Designer-Dieter_Rams.jpg


Dieter Rams’ Ten Principles of Good Design (late 1970s)
“Is my design a good design?” Good design…

1. is innovative.
2. makes a product useful.
3. is aesthetic.
4. makes a product understandable.
5. is honest.
6. is unobtrusive.
7. is long‑lasting.
8. is thorough down to the last detail.
9. is environmentally friendly.

10. is as little design as possible.
https://en.wikipedia.org/wiki/Dieter_Rams

Photo by Vitsoe, CC BY‑SA 3.0,
https://commons.wikimedia.org/wiki/File:Designer‑Dieter_Rams.jpg

https://en.wikipedia.org/wiki/Dieter_Rams
https://commons.wikimedia.org/wiki/File:Designer-Dieter_Rams.jpg


Holistic Architecture1

“Whomade this..?!”

“Why didn’t they consider this?
It’s so obvious!”

Holistic architecture means to design
for awhole system.

That is not easy and requires
knowledge and experience. Image by Maurizio.Carta, CC BY 3.0

1https://www.interaction‑design.org/literature/article/holistic‑design‑design‑that‑
goes‑beyond‑the‑problem

https://www.interaction-design.org/literature/article/holistic-design-design-that-goes-beyond-the-problem
https://www.interaction-design.org/literature/article/holistic-design-design-that-goes-beyond-the-problem


Holistic Architecture1

“Whomade this..?!”

“Why didn’t they consider this?
It’s so obvious!”

Holistic architecture means to design
for awhole system.

That is not easy and requires
knowledge and experience. Image by Maurizio.Carta, CC BY 3.0

1https://www.interaction‑design.org/literature/article/holistic‑design‑design‑that‑
goes‑beyond‑the‑problem

https://www.interaction-design.org/literature/article/holistic-design-design-that-goes-beyond-the-problem
https://www.interaction-design.org/literature/article/holistic-design-design-that-goes-beyond-the-problem


Holistic Architecture1

“Whomade this..?!”

“Why didn’t they consider this?
It’s so obvious!”

Holistic architecture means to design
for awhole system.

That is not easy and requires
knowledge and experience. Image by Maurizio.Carta, CC BY 3.0

1https://www.interaction‑design.org/literature/article/holistic‑design‑design‑that‑
goes‑beyond‑the‑problem

https://www.interaction-design.org/literature/article/holistic-design-design-that-goes-beyond-the-problem
https://www.interaction-design.org/literature/article/holistic-design-design-that-goes-beyond-the-problem


Holistic Architecture1

“Whomade this..?!”

“Why didn’t they consider this?
It’s so obvious!”

Holistic architecture means to design
for awhole system.

That is not easy and requires
knowledge and experience. Image by Maurizio.Carta, CC BY 3.0

1https://www.interaction‑design.org/literature/article/holistic‑design‑design‑that‑
goes‑beyond‑the‑problem

https://www.interaction-design.org/literature/article/holistic-design-design-that-goes-beyond-the-problem
https://www.interaction-design.org/literature/article/holistic-design-design-that-goes-beyond-the-problem


Holistic Architecture1

“Whomade this..?!”

“Why didn’t they consider this?
It’s so obvious!”

Holistic architecture means to design
for awhole system.

That is not easy and requires
knowledge and experience. Image by Maurizio.Carta, CC BY 3.0

1https://www.interaction‑design.org/literature/article/holistic‑design‑design‑that‑
goes‑beyond‑the‑problem

https://www.interaction-design.org/literature/article/holistic-design-design-that-goes-beyond-the-problem
https://www.interaction-design.org/literature/article/holistic-design-design-that-goes-beyond-the-problem


Explicit and Implicit Knowledge

Explicit knowledge is the most basic form of knowledge and is
easy to pass along because it’s written down and accessible.

https://bloomfire.com/blog/implicit‑tacit‑explicit‑knowledge/

Implicit Knowledge is knowledge that is gained through inciden‑
tal activities, or without awareness that learning is occurring.

https://trainingindustry.com/glossary/implicit‑knowledge/

https://bloomfire.com/blog/implicit-tacit-explicit-knowledge/
https://trainingindustry.com/glossary/implicit-knowledge/


Explicit and Implicit Knowledge

Explicit knowledge is the most basic form of knowledge and is
easy to pass along because it’s written down and accessible.

https://bloomfire.com/blog/implicit‑tacit‑explicit‑knowledge/

Implicit Knowledge is knowledge that is gained through inciden‑
tal activities, or without awareness that learning is occurring.

https://trainingindustry.com/glossary/implicit‑knowledge/

https://bloomfire.com/blog/implicit-tacit-explicit-knowledge/
https://trainingindustry.com/glossary/implicit-knowledge/


Explicit and Implicit Knowledge

Explicit knowledge is the most basic form of knowledge and is
easy to pass along because it’s written down and accessible.

https://bloomfire.com/blog/implicit‑tacit‑explicit‑knowledge/

Implicit Knowledge is knowledge that is gained through inciden‑
tal activities, or without awareness that learning is occurring.

https://trainingindustry.com/glossary/implicit‑knowledge/

https://bloomfire.com/blog/implicit-tacit-explicit-knowledge/
https://trainingindustry.com/glossary/implicit-knowledge/


Tacit and Tribal Knowledge

Tacit knowledge refers to the knowledge, skills, and abilities an
individual gains through experience that is often difficult to put
into words or otherwise communicate.

https://helpjuice.com/blog/tacit‑knowledge

Tribal knowledge refers to any unwritten knowledge within a
company that is not widely known.

https://www.lucidchart.com/blog/what‑is‑tribal‑knowledge

https://helpjuice.com/blog/tacit-knowledge
https://www.lucidchart.com/blog/what-is-tribal-knowledge


Tacit and Tribal Knowledge

Tacit knowledge refers to the knowledge, skills, and abilities an
individual gains through experience that is often difficult to put
into words or otherwise communicate.

https://helpjuice.com/blog/tacit‑knowledge

Tribal knowledge refers to any unwritten knowledge within a
company that is not widely known.

https://www.lucidchart.com/blog/what‑is‑tribal‑knowledge

https://helpjuice.com/blog/tacit-knowledge
https://www.lucidchart.com/blog/what-is-tribal-knowledge


Tacit and Tribal Knowledge

Tacit knowledge refers to the knowledge, skills, and abilities an
individual gains through experience that is often difficult to put
into words or otherwise communicate.

https://helpjuice.com/blog/tacit‑knowledge

Tribal knowledge refers to any unwritten knowledge within a
company that is not widely known.

https://www.lucidchart.com/blog/what‑is‑tribal‑knowledge

https://helpjuice.com/blog/tacit-knowledge
https://www.lucidchart.com/blog/what-is-tribal-knowledge


Computer Knowledge

A lot of knowledge about computers is hard to pass on and takes time to
learn. Manuals can be very sparse and require experience to read.

At the same time, it is amystery to figure out what ideas are transferable,
what is common between vendors and products, and what is specific.



Computer Knowledge

A lot of knowledge about computers is hard to pass on and takes time to
learn. Manuals can be very sparse and require experience to read.

At the same time, it is amystery to figure out what ideas are transferable,
what is common between vendors and products, and what is specific.



Computer Knowledge

A lot of knowledge about computers is hard to pass on and takes time to
learn. Manuals can be very sparse and require experience to read.

At the same time, it is amystery to figure out what ideas are transferable,
what is common between vendors and products, and what is specific.



Electromechanical Computers

Harvard Mark I
1944, general‑purpose computer
First programmers: Richard Milton Bloch, Robert
Campbell, Grace Hopper

Grace Hopper had the idea of a
machine‑independent programming language.
She created FLOW‑MATIC, the basis for COBOL.

Photo by ArnoldReinhold ‑ Own work, CC BY‑SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=34872964

https://en.wikipedia.org/wiki/Harvard_Mark_I

https://commons.wikimedia.org/w/index.php?curid=34872964
https://en.wikipedia.org/wiki/Harvard_Mark_I


Electromechanical Computers

Harvard Mark I
1944, general‑purpose computer
First programmers: Richard Milton Bloch, Robert
Campbell, Grace Hopper

Grace Hopper had the idea of a
machine‑independent programming language.
She created FLOW‑MATIC, the basis for COBOL.

Photo by ArnoldReinhold ‑ Own work, CC BY‑SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=34872964

https://en.wikipedia.org/wiki/Harvard_Mark_I

https://commons.wikimedia.org/w/index.php?curid=34872964
https://en.wikipedia.org/wiki/Harvard_Mark_I


Electromechanical Computers

Harvard Mark I
1944, general‑purpose computer
First programmers: Richard Milton Bloch, Robert
Campbell, Grace Hopper

Grace Hopper had the idea of a
machine‑independent programming language.

She created FLOW‑MATIC, the basis for COBOL.

Photo by ArnoldReinhold ‑ Own work, CC BY‑SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=34872964

https://en.wikipedia.org/wiki/Harvard_Mark_I

https://commons.wikimedia.org/w/index.php?curid=34872964
https://en.wikipedia.org/wiki/Harvard_Mark_I


Electromechanical Computers

Harvard Mark I
1944, general‑purpose computer
First programmers: Richard Milton Bloch, Robert
Campbell, Grace Hopper

Grace Hopper had the idea of a
machine‑independent programming language.
She created FLOW‑MATIC, the basis for COBOL.

Photo by ArnoldReinhold ‑ Own work, CC BY‑SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=34872964

https://en.wikipedia.org/wiki/Harvard_Mark_I

https://commons.wikimedia.org/w/index.php?curid=34872964
https://en.wikipedia.org/wiki/Harvard_Mark_I


Electromechanical Computers

Harvard Mark I
1944, general‑purpose computer
First programmers: Richard Milton Bloch, Robert
Campbell, Grace Hopper

Grace Hopper had the idea of a
machine‑independent programming language.
She created FLOW‑MATIC, the basis for COBOL.

Photo by ArnoldReinhold ‑ Own work, CC BY‑SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=34872964

https://en.wikipedia.org/wiki/Harvard_Mark_I

https://commons.wikimedia.org/w/index.php?curid=34872964
https://en.wikipedia.org/wiki/Harvard_Mark_I


Electronic Computers

ENIAC
1945, first programmable, general‑purpose
digital computer
First ENIAC programmers: Jean Bartik,
Betty Holberton, Kathleen Antonelli,
Marlyn Meltzer, Ruth Teitelbaum, Frances
Spence
Betty Holberton invented breakpoints.
Kathleen Antonelli invented subroutines.

https://en.wikipedia.org/wiki/ENIAC

https://en.wikipedia.org/wiki/ENIAC


Electronic Computers

ENIAC
1945, first programmable, general‑purpose
digital computer
First ENIAC programmers: Jean Bartik,
Betty Holberton, Kathleen Antonelli,
Marlyn Meltzer, Ruth Teitelbaum, Frances
Spence

Betty Holberton invented breakpoints.
Kathleen Antonelli invented subroutines.

https://en.wikipedia.org/wiki/ENIAC

https://en.wikipedia.org/wiki/ENIAC


Electronic Computers

ENIAC
1945, first programmable, general‑purpose
digital computer
First ENIAC programmers: Jean Bartik,
Betty Holberton, Kathleen Antonelli,
Marlyn Meltzer, Ruth Teitelbaum, Frances
Spence
Betty Holberton invented breakpoints.

Kathleen Antonelli invented subroutines.
https://en.wikipedia.org/wiki/ENIAC

https://en.wikipedia.org/wiki/ENIAC


Electronic Computers

ENIAC
1945, first programmable, general‑purpose
digital computer
First ENIAC programmers: Jean Bartik,
Betty Holberton, Kathleen Antonelli,
Marlyn Meltzer, Ruth Teitelbaum, Frances
Spence
Betty Holberton invented breakpoints.
Kathleen Antonelli invented subroutines.

https://en.wikipedia.org/wiki/ENIAC

https://en.wikipedia.org/wiki/ENIAC


Transistor

Yes, the tiny digital switch that makes our
machines go vroom vroom.
It just turned 75 on December 23. :‑)

John Bardeen, Walter Brattain and William Shockley invented
the first working transistors at Bell Labs, the point‑contact tran‑
sistor in 1947. Shockley introduced the improvedbipolar junction
transistor in 1948, which entered production in the early 1950s
and led to the first widespread use of transistors.

https://en.wikipedia.org/wiki/History_of_the_transistor

https://www.pbs.org/transistor/index.html

https://en.wikipedia.org/wiki/History_of_the_transistor
https://www.pbs.org/transistor/index.html


Transistor

Yes, the tiny digital switch that makes our
machines go vroom vroom.
It just turned 75 on December 23. :‑)

John Bardeen, Walter Brattain and William Shockley invented
the first working transistors at Bell Labs, the point‑contact tran‑
sistor in 1947. Shockley introduced the improvedbipolar junction
transistor in 1948, which entered production in the early 1950s
and led to the first widespread use of transistors.

https://en.wikipedia.org/wiki/History_of_the_transistor

https://www.pbs.org/transistor/index.html

https://en.wikipedia.org/wiki/History_of_the_transistor
https://www.pbs.org/transistor/index.html


Transistor

Yes, the tiny digital switch that makes our
machines go vroom vroom.
It just turned 75 on December 23. :‑)

John Bardeen, Walter Brattain and William Shockley invented
the first working transistors at Bell Labs, the point‑contact tran‑
sistor in 1947. Shockley introduced the improvedbipolar junction
transistor in 1948, which entered production in the early 1950s
and led to the first widespread use of transistors.

https://en.wikipedia.org/wiki/History_of_the_transistor

https://www.pbs.org/transistor/index.html

https://en.wikipedia.org/wiki/History_of_the_transistor
https://www.pbs.org/transistor/index.html


Assembly Language (1947)

Kathleen Booth, who has died aged 100, co‑designed of one of
the world’s first operational computers andwrote two of the ear‑
liest books on computer design and programming; she was also
credited with the invention of the first “assembly language”, a
programming language designed to be readable by users

https://www.telegraph.co.uk/obituaries/2022/10/25/kathleen‑booth‑
computer‑pioneer‑who‑made‑major‑breakthrough/

https://www.telegraph.co.uk/obituaries/2022/10/25/kathleen-booth-computer-pioneer-who-made-major-breakthrough/
https://www.telegraph.co.uk/obituaries/2022/10/25/kathleen-booth-computer-pioneer-who-made-major-breakthrough/


Assembly Language (1947)

Kathleen Booth, who has died aged 100, co‑designed of one of
the world’s first operational computers andwrote two of the ear‑
liest books on computer design and programming; she was also
credited with the invention of the first “assembly language”, a
programming language designed to be readable by users

https://www.telegraph.co.uk/obituaries/2022/10/25/kathleen‑booth‑
computer‑pioneer‑who‑made‑major‑breakthrough/

https://www.telegraph.co.uk/obituaries/2022/10/25/kathleen-booth-computer-pioneer-who-made-major-breakthrough/
https://www.telegraph.co.uk/obituaries/2022/10/25/kathleen-booth-computer-pioneer-who-made-major-breakthrough/


Electronic Delay Storage Automatic Calculator (1949)2

Assembly language: “initial orders”
2https://www.leo‑computers.org.uk/images/How%20EDSAC%20Works.pdf

https://www.leo-computers.org.uk/images/How%20EDSAC%20Works.pdf


Electronic Delay Storage Automatic Calculator (1949)2

Assembly language: “initial orders”

2https://www.leo‑computers.org.uk/images/How%20EDSAC%20Works.pdf

https://www.leo-computers.org.uk/images/How%20EDSAC%20Works.pdf


Electronic Delay Storage Automatic Calculator (1949)2

Assembly language: “initial orders”
2https://www.leo‑computers.org.uk/images/How%20EDSAC%20Works.pdf

https://www.leo-computers.org.uk/images/How%20EDSAC%20Works.pdf


EDSAC Diagram

design picked up by J. Lyons & Co. Ltd. for business purposes ‑ LEO I



EDSAC Diagram

design picked up by J. Lyons & Co. Ltd. for business purposes ‑ LEO I



Integrated Circuit
1958, Jack Kilby at Texas Instruments

1959, Robert Noyce at the Fairchild Semiconductor

https://www.pbs.org/transistor/background1/events/icinv.html

Photo by Intel Free Press, CC BY‑SA 2.0, https://www.flickr.com/photos/
intelfreepress/8267615769/sizes/o/in/photostream/

https://www.pbs.org/transistor/background1/events/icinv.html
https://www.flickr.com/photos/intelfreepress/8267615769/sizes/o/in/photostream/
https://www.flickr.com/photos/intelfreepress/8267615769/sizes/o/in/photostream/


Home Computers

https://en.wikipedia.org/wiki/Home_computer

“1977 Trinity”: Commodore PET 2001‑8, Apple II, TRS‑80 Model I

Photo by Tim Colegrove, CC BY‑SA 4.0,
https://commons.wikimedia.org/wiki/File:Trinity77.jpg

https://en.wikipedia.org/wiki/Home_computer
https://commons.wikimedia.org/wiki/File:Trinity77.jpg


Home Computers
https://en.wikipedia.org/wiki/Home_computer

“1977 Trinity”: Commodore PET 2001‑8, Apple II, TRS‑80 Model I

Photo by Tim Colegrove, CC BY‑SA 4.0,
https://commons.wikimedia.org/wiki/File:Trinity77.jpg

https://en.wikipedia.org/wiki/Home_computer
https://commons.wikimedia.org/wiki/File:Trinity77.jpg


Personal Computers

Kenbak‑I
1971, considered the first personal computer
https://en.wikipedia.org/wiki/History_of_personal_computers

Xerox Alto
1973, Xerox PARC: windows based GUI, desktop, mouse, ethernet

Paradigm shift
The computer now has a consumer rather than only a programmer.
It is run by an operating system instead of an operator.

https://en.wikipedia.org/wiki/History_of_personal_computers


Personal Computers

Kenbak‑I
1971, considered the first personal computer
https://en.wikipedia.org/wiki/History_of_personal_computers

Xerox Alto
1973, Xerox PARC: windows based GUI, desktop, mouse, ethernet

Paradigm shift
The computer now has a consumer rather than only a programmer.
It is run by an operating system instead of an operator.

https://en.wikipedia.org/wiki/History_of_personal_computers


Personal Computers

Kenbak‑I
1971, considered the first personal computer
https://en.wikipedia.org/wiki/History_of_personal_computers

Xerox Alto
1973, Xerox PARC: windows based GUI, desktop, mouse, ethernet

Paradigm shift
The computer now has a consumer rather than only a programmer.
It is run by an operating system instead of an operator.

https://en.wikipedia.org/wiki/History_of_personal_computers


Personal Computers

Kenbak‑I
1971, considered the first personal computer
https://en.wikipedia.org/wiki/History_of_personal_computers

Xerox Alto
1973, Xerox PARC: windows based GUI, desktop, mouse, ethernet

Paradigm shift
The computer now has a consumer rather than only a programmer.
It is run by an operating system instead of an operator.

https://en.wikipedia.org/wiki/History_of_personal_computers


Microprocessors

1971, Intel 4004, first CPU, 4‑bit

IBM PC (model 5150)
1981, based on Intel 8088

The design process was kept under a policy of strict secrecy, with
all other IBM divisions kept in the dark about the project.

https://en.wikipedia.org/wiki/IBM_Personal_Computer

First Laptop: Gavilan SC
1983, based on Intel 8088

Jack Hall, an award‑winning industrial designer, was chosen to
work out the ergonomics, mechanics and overall appearance of
the Gavilan.

https://en.wikipedia.org/wiki/Gavilan_SC

https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/Gavilan_SC


Microprocessors

1971, Intel 4004, first CPU, 4‑bit

IBM PC (model 5150)
1981, based on Intel 8088

The design process was kept under a policy of strict secrecy, with
all other IBM divisions kept in the dark about the project.

https://en.wikipedia.org/wiki/IBM_Personal_Computer

First Laptop: Gavilan SC
1983, based on Intel 8088

Jack Hall, an award‑winning industrial designer, was chosen to
work out the ergonomics, mechanics and overall appearance of
the Gavilan.

https://en.wikipedia.org/wiki/Gavilan_SC

https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/Gavilan_SC


Microprocessors

1971, Intel 4004, first CPU, 4‑bit

IBM PC (model 5150)
1981, based on Intel 8088

The design process was kept under a policy of strict secrecy, with
all other IBM divisions kept in the dark about the project.

https://en.wikipedia.org/wiki/IBM_Personal_Computer

First Laptop: Gavilan SC
1983, based on Intel 8088

Jack Hall, an award‑winning industrial designer, was chosen to
work out the ergonomics, mechanics and overall appearance of
the Gavilan.

https://en.wikipedia.org/wiki/Gavilan_SC

https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/Gavilan_SC


Microprocessors

1971, Intel 4004, first CPU, 4‑bit

IBM PC (model 5150)
1981, based on Intel 8088

The design process was kept under a policy of strict secrecy, with
all other IBM divisions kept in the dark about the project.

https://en.wikipedia.org/wiki/IBM_Personal_Computer

First Laptop: Gavilan SC
1983, based on Intel 8088

Jack Hall, an award‑winning industrial designer, was chosen to
work out the ergonomics, mechanics and overall appearance of
the Gavilan.

https://en.wikipedia.org/wiki/Gavilan_SC

https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/Gavilan_SC


Discovering a Computer



Computer = Processor + Memory + Peripherals

…almost everything is or contains a computer today.



Everyday Electronics

Shopping Center and Supermarket
parking lots: sensors and capacity displays
elevators, escalators, automatic doors
price tags (e‑ink displays)
barcode scanners and electronic payment

IoT and Friends
fridges, coffeemachines, dishwashers, laundry machines…
gadgets, wearables…
routers, IP cameras, network storage…
industrial control systems, appliances…

Smart Home/Building/City
Idea: Automation, energy saving, data collection
Example: lights that turn on when approaching and off after leaving



Everyday Electronics
Shopping Center and Supermarket

parking lots: sensors and capacity displays
elevators, escalators, automatic doors
price tags (e‑ink displays)
barcode scanners and electronic payment

IoT and Friends
fridges, coffeemachines, dishwashers, laundry machines…
gadgets, wearables…
routers, IP cameras, network storage…
industrial control systems, appliances…

Smart Home/Building/City
Idea: Automation, energy saving, data collection
Example: lights that turn on when approaching and off after leaving



Everyday Electronics
Shopping Center and Supermarket

parking lots: sensors and capacity displays
elevators, escalators, automatic doors
price tags (e‑ink displays)
barcode scanners and electronic payment

IoT and Friends
fridges, coffeemachines, dishwashers, laundry machines…
gadgets, wearables…
routers, IP cameras, network storage…
industrial control systems, appliances…

Smart Home/Building/City
Idea: Automation, energy saving, data collection
Example: lights that turn on when approaching and off after leaving



Everyday Electronics
Shopping Center and Supermarket

parking lots: sensors and capacity displays
elevators, escalators, automatic doors
price tags (e‑ink displays)
barcode scanners and electronic payment

IoT and Friends
fridges, coffeemachines, dishwashers, laundry machines…
gadgets, wearables…
routers, IP cameras, network storage…
industrial control systems, appliances…

Smart Home/Building/City
Idea: Automation, energy saving, data collection
Example: lights that turn on when approaching and off after leaving



Entertainment or Education

Google Stadia (RIP)

EOL: January 18, 2023

Labor Badge
modular
reusable
discoverable
programmable

Help wanted:
Design other SoM
carrier boards

https://blog.google/products/stadia/message‑on‑stadia‑streaming‑
strategy/

https://github.com/das‑labor/badge‑2021

Console hacking is still a thing; see Nintendo and PlayStation. :‑)

https://blog.google/products/stadia/message-on-stadia-streaming-strategy/
https://blog.google/products/stadia/message-on-stadia-streaming-strategy/
https://github.com/das-labor/badge-2021


Entertainment or Education

Google Stadia (RIP)

EOL: January 18, 2023

Labor Badge
modular
reusable
discoverable
programmable

Help wanted:
Design other SoM
carrier boards

https://blog.google/products/stadia/message‑on‑stadia‑streaming‑
strategy/

https://github.com/das‑labor/badge‑2021

Console hacking is still a thing; see Nintendo and PlayStation. :‑)

https://blog.google/products/stadia/message-on-stadia-streaming-strategy/
https://blog.google/products/stadia/message-on-stadia-streaming-strategy/
https://github.com/das-labor/badge-2021


Entertainment or Education

Google Stadia (RIP)

EOL: January 18, 2023

Labor Badge
modular
reusable
discoverable
programmable

Help wanted:
Design other SoM
carrier boards

https://blog.google/products/stadia/message‑on‑stadia‑streaming‑
strategy/

https://github.com/das‑labor/badge‑2021

Console hacking is still a thing; see Nintendo and PlayStation. :‑)

https://blog.google/products/stadia/message-on-stadia-streaming-strategy/
https://blog.google/products/stadia/message-on-stadia-streaming-strategy/
https://github.com/das-labor/badge-2021


Entertainment or Education

Google Stadia (RIP)

EOL: January 18, 2023

Labor Badge
modular
reusable
discoverable
programmable

Help wanted:
Design other SoM
carrier boards

https://blog.google/products/stadia/message‑on‑stadia‑streaming‑
strategy/

https://github.com/das‑labor/badge‑2021

Console hacking is still a thing; see Nintendo and PlayStation. :‑)

https://blog.google/products/stadia/message-on-stadia-streaming-strategy/
https://blog.google/products/stadia/message-on-stadia-streaming-strategy/
https://github.com/das-labor/badge-2021


Entertainment or Education

Google Stadia (RIP)

EOL: January 18, 2023

Labor Badge
modular
reusable
discoverable
programmable

Help wanted:
Design other SoM
carrier boards

https://blog.google/products/stadia/message‑on‑stadia‑streaming‑
strategy/

https://github.com/das‑labor/badge‑2021

Console hacking is still a thing; see Nintendo and PlayStation. :‑)

https://blog.google/products/stadia/message-on-stadia-streaming-strategy/
https://blog.google/products/stadia/message-on-stadia-streaming-strategy/
https://github.com/das-labor/badge-2021


Community Computers

Anachro
https://anachro.computer/

What is Anachro? Anachro is two things: A Network Protocol, and
a PC architecture for a microcontroller‑based system.

Neotron
https://neotron‑compute.github.io/Neotron‑Book/
https://github.com/Neotron‑Compute/Neotron‑Pico

A Neotron system powered by the Raspberry Pi Pico, in a micro‑
ATX form‑factor.

Bringing Up the Neotron PICO ‑ A retro‑style mATX PC; Jonathan Pallant,
Ben Jordan and Bil Herd
https://www.youtube.com/watch?v=X1‑mt4mrZ9E

https://anachro.computer/
https://neotron-compute.github.io/Neotron-Book/
https://github.com/Neotron-Compute/Neotron-Pico
https://www.youtube.com/watch?v=X1-mt4mrZ9E


Community Computers

Anachro
https://anachro.computer/

What is Anachro? Anachro is two things: A Network Protocol, and
a PC architecture for a microcontroller‑based system.

Neotron
https://neotron‑compute.github.io/Neotron‑Book/
https://github.com/Neotron‑Compute/Neotron‑Pico

A Neotron system powered by the Raspberry Pi Pico, in a micro‑
ATX form‑factor.

Bringing Up the Neotron PICO ‑ A retro‑style mATX PC; Jonathan Pallant,
Ben Jordan and Bil Herd
https://www.youtube.com/watch?v=X1‑mt4mrZ9E

https://anachro.computer/
https://neotron-compute.github.io/Neotron-Book/
https://github.com/Neotron-Compute/Neotron-Pico
https://www.youtube.com/watch?v=X1-mt4mrZ9E


Community Computers

Anachro
https://anachro.computer/

What is Anachro? Anachro is two things: A Network Protocol, and
a PC architecture for a microcontroller‑based system.

Neotron
https://neotron‑compute.github.io/Neotron‑Book/
https://github.com/Neotron‑Compute/Neotron‑Pico

A Neotron system powered by the Raspberry Pi Pico, in a micro‑
ATX form‑factor.

Bringing Up the Neotron PICO ‑ A retro‑style mATX PC; Jonathan Pallant,
Ben Jordan and Bil Herd
https://www.youtube.com/watch?v=X1‑mt4mrZ9E

https://anachro.computer/
https://neotron-compute.github.io/Neotron-Book/
https://github.com/Neotron-Compute/Neotron-Pico
https://www.youtube.com/watch?v=X1-mt4mrZ9E


More Computers

moss
https://github.com/mosscomp/moss

moss is a vertically‑integrated computer with the following de‑
sign goals:

Exceedingly understandable by users.
Competitive in performance.

Build an 8‑bit computer from scratch
https://eater.net/8bit/

Start to an 80286 System
https://www.rehsdonline.com/post/start‑to‑an‑80286‑system
https://www.youtube.com/playlist?list=PL7sb‑_3xk_CAMDL_dj9l‑
plqSrEzcqx1G

https://github.com/mosscomp/moss
https://eater.net/8bit/
https://www.rehsdonline.com/post/start-to-an-80286-system
https://www.youtube.com/playlist?list=PL7sb-_3xk_CAMDL_dj9l-plqSrEzcqx1G
https://www.youtube.com/playlist?list=PL7sb-_3xk_CAMDL_dj9l-plqSrEzcqx1G


More Computers

moss
https://github.com/mosscomp/moss

moss is a vertically‑integrated computer with the following de‑
sign goals:

Exceedingly understandable by users.
Competitive in performance.

Build an 8‑bit computer from scratch
https://eater.net/8bit/

Start to an 80286 System
https://www.rehsdonline.com/post/start‑to‑an‑80286‑system
https://www.youtube.com/playlist?list=PL7sb‑_3xk_CAMDL_dj9l‑
plqSrEzcqx1G

https://github.com/mosscomp/moss
https://eater.net/8bit/
https://www.rehsdonline.com/post/start-to-an-80286-system
https://www.youtube.com/playlist?list=PL7sb-_3xk_CAMDL_dj9l-plqSrEzcqx1G
https://www.youtube.com/playlist?list=PL7sb-_3xk_CAMDL_dj9l-plqSrEzcqx1G


More Computers

moss
https://github.com/mosscomp/moss

moss is a vertically‑integrated computer with the following de‑
sign goals:

Exceedingly understandable by users.
Competitive in performance.

Build an 8‑bit computer from scratch
https://eater.net/8bit/

Start to an 80286 System
https://www.rehsdonline.com/post/start‑to‑an‑80286‑system
https://www.youtube.com/playlist?list=PL7sb‑_3xk_CAMDL_dj9l‑
plqSrEzcqx1G

https://github.com/mosscomp/moss
https://eater.net/8bit/
https://www.rehsdonline.com/post/start-to-an-80286-system
https://www.youtube.com/playlist?list=PL7sb-_3xk_CAMDL_dj9l-plqSrEzcqx1G
https://www.youtube.com/playlist?list=PL7sb-_3xk_CAMDL_dj9l-plqSrEzcqx1G


More Computers

moss
https://github.com/mosscomp/moss

moss is a vertically‑integrated computer with the following de‑
sign goals:

Exceedingly understandable by users.
Competitive in performance.

Build an 8‑bit computer from scratch
https://eater.net/8bit/

Start to an 80286 System
https://www.rehsdonline.com/post/start‑to‑an‑80286‑system
https://www.youtube.com/playlist?list=PL7sb‑_3xk_CAMDL_dj9l‑
plqSrEzcqx1G

https://github.com/mosscomp/moss
https://eater.net/8bit/
https://www.rehsdonline.com/post/start-to-an-80286-system
https://www.youtube.com/playlist?list=PL7sb-_3xk_CAMDL_dj9l-plqSrEzcqx1G
https://www.youtube.com/playlist?list=PL7sb-_3xk_CAMDL_dj9l-plqSrEzcqx1G


Mobile Devices

MNT Reform Laptop
The Much More Personal Computer

https://mntre.com/

PinePhone
AnOpen Source Smartphone Supported by All Major Linux Phone
Projects

https://www.pine64.org/pinephone/

https://mntre.com/
https://www.pine64.org/pinephone/


Mobile Devices

MNT Reform Laptop
The Much More Personal Computer

https://mntre.com/

PinePhone
AnOpen Source Smartphone Supported by All Major Linux Phone
Projects

https://www.pine64.org/pinephone/

https://mntre.com/
https://www.pine64.org/pinephone/


Mobile Devices

MNT Reform Laptop
The Much More Personal Computer

https://mntre.com/

PinePhone
AnOpen Source Smartphone Supported by All Major Linux Phone
Projects

https://www.pine64.org/pinephone/

https://mntre.com/
https://www.pine64.org/pinephone/


Big Computers

OCP (Open Compute Project)
https://www.opencompute.org/about

The Open Compute Project (OCP) is a collaborative community
focused on redesigning hardware technology to efficiently sup‑
port the growing demands on compute infrastructure.

Oxide Computer
A rack‑scale server with tightly integrated hardware and soft‑
ware.

https://oxide.computer/

Racklet
https://racklet.io/

Racklet is a fully‑integrated, miniature server rack.

https://www.opencompute.org/about
https://oxide.computer/
https://racklet.io/


Big Computers

OCP (Open Compute Project)
https://www.opencompute.org/about

The Open Compute Project (OCP) is a collaborative community
focused on redesigning hardware technology to efficiently sup‑
port the growing demands on compute infrastructure.

Oxide Computer
A rack‑scale server with tightly integrated hardware and soft‑
ware.

https://oxide.computer/

Racklet
https://racklet.io/

Racklet is a fully‑integrated, miniature server rack.

https://www.opencompute.org/about
https://oxide.computer/
https://racklet.io/


Big Computers

OCP (Open Compute Project)
https://www.opencompute.org/about

The Open Compute Project (OCP) is a collaborative community
focused on redesigning hardware technology to efficiently sup‑
port the growing demands on compute infrastructure.

Oxide Computer
A rack‑scale server with tightly integrated hardware and soft‑
ware.

https://oxide.computer/

Racklet
https://racklet.io/

Racklet is a fully‑integrated, miniature server rack.

https://www.opencompute.org/about
https://oxide.computer/
https://racklet.io/


Big Computers

OCP (Open Compute Project)
https://www.opencompute.org/about

The Open Compute Project (OCP) is a collaborative community
focused on redesigning hardware technology to efficiently sup‑
port the growing demands on compute infrastructure.

Oxide Computer
A rack‑scale server with tightly integrated hardware and soft‑
ware.

https://oxide.computer/

Racklet
https://racklet.io/

Racklet is a fully‑integrated, miniature server rack.

https://www.opencompute.org/about
https://oxide.computer/
https://racklet.io/


Single Board Computers

Many aremarketed as open source. Are they though?

Documentation
schematics and board design
manuals and instructions
open license

Source Code
open tools for flashing, debugging and image composition
firmware, from the start, documented (U‑Boot, oreboot, …)
Linux or other OS,mainline friendly (git fork, not source dump)
all code usable with upstream toolchains, or provide toolchains in a
reproducible form (not only binaries for a specific architecture/OS)

OSHWA Certification: https://certification.oshwa.org/

https://certification.oshwa.org/


Single Board Computers
Many aremarketed as open source. Are they though?

Documentation
schematics and board design
manuals and instructions
open license

Source Code
open tools for flashing, debugging and image composition
firmware, from the start, documented (U‑Boot, oreboot, …)
Linux or other OS,mainline friendly (git fork, not source dump)
all code usable with upstream toolchains, or provide toolchains in a
reproducible form (not only binaries for a specific architecture/OS)

OSHWA Certification: https://certification.oshwa.org/

https://certification.oshwa.org/


Single Board Computers
Many aremarketed as open source. Are they though?

Documentation
schematics and board design
manuals and instructions
open license

Source Code
open tools for flashing, debugging and image composition
firmware, from the start, documented (U‑Boot, oreboot, …)
Linux or other OS,mainline friendly (git fork, not source dump)
all code usable with upstream toolchains, or provide toolchains in a
reproducible form (not only binaries for a specific architecture/OS)

OSHWA Certification: https://certification.oshwa.org/

https://certification.oshwa.org/


Single Board Computers
Many aremarketed as open source. Are they though?

Documentation
schematics and board design
manuals and instructions
open license

Source Code
open tools for flashing, debugging and image composition
firmware, from the start, documented (U‑Boot, oreboot, …)
Linux or other OS,mainline friendly (git fork, not source dump)
all code usable with upstream toolchains, or provide toolchains in a
reproducible form (not only binaries for a specific architecture/OS)

OSHWA Certification: https://certification.oshwa.org/

https://certification.oshwa.org/


Single Board Computers
Many aremarketed as open source. Are they though?

Documentation
schematics and board design
manuals and instructions
open license

Source Code
open tools for flashing, debugging and image composition
firmware, from the start, documented (U‑Boot, oreboot, …)
Linux or other OS,mainline friendly (git fork, not source dump)
all code usable with upstream toolchains, or provide toolchains in a
reproducible form (not only binaries for a specific architecture/OS)

OSHWA Certification: https://certification.oshwa.org/

https://certification.oshwa.org/


Firmware

Predicament
Firmware is a loosely defined term, sometimes called “the BIOS”.

It has different meanings in marketing, colloquial speech, across
products and vendors, and often wants to include many andmore
things than necessary.

At the very least, firmware is the software part of a computing platform
that initializes hardware so that an operating systemmay run, or any
payload, e.g., a bare metal application or hypervisor.

Why would that ever be necessary, even?



Firmware
Predicament
Firmware is a loosely defined term, sometimes called “the BIOS”.

It has different meanings in marketing, colloquial speech, across
products and vendors, and often wants to include many andmore
things than necessary.

At the very least, firmware is the software part of a computing platform
that initializes hardware so that an operating systemmay run, or any
payload, e.g., a bare metal application or hypervisor.

Why would that ever be necessary, even?



Firmware
Predicament
Firmware is a loosely defined term, sometimes called “the BIOS”.

It has different meanings in marketing, colloquial speech, across
products and vendors, and often wants to include many andmore
things than necessary.

At the very least, firmware is the software part of a computing platform
that initializes hardware so that an operating systemmay run, or any
payload, e.g., a bare metal application or hypervisor.

Why would that ever be necessary, even?



Firmware
Predicament
Firmware is a loosely defined term, sometimes called “the BIOS”.

It has different meanings in marketing, colloquial speech, across
products and vendors, and often wants to include many andmore
things than necessary.

At the very least, firmware is the software part of a computing platform
that initializes hardware so that an operating systemmay run, or any
payload, e.g., a bare metal application or hypervisor.

Why would that ever be necessary, even?



Firmware
Predicament
Firmware is a loosely defined term, sometimes called “the BIOS”.

It has different meanings in marketing, colloquial speech, across
products and vendors, and often wants to include many andmore
things than necessary.

At the very least, firmware is the software part of a computing platform
that initializes hardware so that an operating systemmay run, or any
payload, e.g., a bare metal application or hypervisor.

Why would that ever be necessary, even?



Open Source Firmware Foundation (OSFF)

https://osfw.foundation/

TheOSFF ismeant tobeanumbrellaorganization for all parties
interested in open‑source firmware and acts as the first point of
contact in the open‑source firmware ecosystem.

https://osfw.foundation/


Open Source Firmware Foundation (OSFF)

https://osfw.foundation/

TheOSFF ismeant tobeanumbrellaorganization for all parties
interested in open‑source firmware and acts as the first point of
contact in the open‑source firmware ecosystem.

https://osfw.foundation/


Fiedka the Firmware Editor

https://fiedka.app/

Features
analyze firmware images
visualize flash usage
explore file systems

▶ UEFI
▶ PSP (AMD)
▶ CBFS (coreboot)

remove UEFI files
embed LinuxBoot
meta data export

Work in progress
SBoM (Software Bill of Materials)

https://fiedka.app/


Fiedka the Firmware Editor

https://fiedka.app/

Features
analyze firmware images
visualize flash usage
explore file systems

▶ UEFI
▶ PSP (AMD)
▶ CBFS (coreboot)

remove UEFI files
embed LinuxBoot
meta data export

Work in progress
SBoM (Software Bill of Materials)

https://fiedka.app/


Fiedka the Firmware Editor

https://fiedka.app/

Features
analyze firmware images
visualize flash usage
explore file systems

▶ UEFI
▶ PSP (AMD)
▶ CBFS (coreboot)

remove UEFI files
embed LinuxBoot
meta data export

Work in progress
SBoM (Software Bill of Materials)

https://fiedka.app/


Platforms and Systems



What are Platforms?

A computing platform or digital platform is an environment in which a
piece of software is executed.

It may be the hardware or the operating system (OS), even
a web browser and associated application programming
interfaces, or other underlying software, as long as the
program code is executed with it.

Computing platforms have different abstraction levels,
including a computer architecture, an OS, or runtime
libraries.

A computing platform is the stage on which computer
programs can run.

https://en.wikipedia.org/wiki/Computing_platform

https://en.wikipedia.org/wiki/Computing_platform


What are Platforms?

A computing platform or digital platform is an environment in which a
piece of software is executed.

It may be the hardware or the operating system (OS), even
a web browser and associated application programming
interfaces, or other underlying software, as long as the
program code is executed with it.

Computing platforms have different abstraction levels,
including a computer architecture, an OS, or runtime
libraries.

A computing platform is the stage on which computer
programs can run.

https://en.wikipedia.org/wiki/Computing_platform

https://en.wikipedia.org/wiki/Computing_platform


Platform System Interface (PSI)

https://github.com/platform‑system‑interface/psi‑spec

Goal: Derive a specification, summarizing firmware projects, their boot
flows, how they interact as a platformwith the actual operating system.

How: Extract features, compare approaches, reevaluate, improve.

https://github.com/platform-system-interface/psi-spec


Platform System Interface (PSI)

https://github.com/platform‑system‑interface/psi‑spec

Goal: Derive a specification, summarizing firmware projects, their boot
flows, how they interact as a platformwith the actual operating system.

How: Extract features, compare approaches, reevaluate, improve.

https://github.com/platform-system-interface/psi-spec


Platform System Interface (PSI)

https://github.com/platform‑system‑interface/psi‑spec

Goal: Derive a specification, summarizing firmware projects, their boot
flows, how they interact as a platformwith the actual operating system.

How: Extract features, compare approaches, reevaluate, improve.

https://github.com/platform-system-interface/psi-spec


Computer Architecture: Buses

https://en.wikipedia.org/wiki/Bus_(computing)

Wires
Example I2C: VCC, GND, SCL (clock), SCA (data)
Many I2C buses are in your laptop, even within HDMI and VGA ports.
They are often used for connecting sensors, e.g., for temperature.
Linux: i2c-tools

Protocols
Example SPI flash: Commands for reading and writing data
We load from SPI flash in oreboot on the Allwinner D1 SoC.

Conventions and Standards
Example: USB
https://www.electronics‑notes.com/articles/connectivity/usb‑
universal‑serial‑bus/basics‑tutorial.php
Those make up interfaces, enabling amarket through compatibility.

https://en.wikipedia.org/wiki/Bus_(computing)
https://www.electronics-notes.com/articles/connectivity/usb-universal-serial-bus/basics-tutorial.php
https://www.electronics-notes.com/articles/connectivity/usb-universal-serial-bus/basics-tutorial.php


Computer Architecture: Buses
https://en.wikipedia.org/wiki/Bus_(computing)

Wires
Example I2C: VCC, GND, SCL (clock), SCA (data)
Many I2C buses are in your laptop, even within HDMI and VGA ports.
They are often used for connecting sensors, e.g., for temperature.
Linux: i2c-tools

Protocols
Example SPI flash: Commands for reading and writing data
We load from SPI flash in oreboot on the Allwinner D1 SoC.

Conventions and Standards
Example: USB
https://www.electronics‑notes.com/articles/connectivity/usb‑
universal‑serial‑bus/basics‑tutorial.php
Those make up interfaces, enabling amarket through compatibility.

https://en.wikipedia.org/wiki/Bus_(computing)
https://www.electronics-notes.com/articles/connectivity/usb-universal-serial-bus/basics-tutorial.php
https://www.electronics-notes.com/articles/connectivity/usb-universal-serial-bus/basics-tutorial.php


Computer Architecture: Buses
https://en.wikipedia.org/wiki/Bus_(computing)

Wires
Example I2C: VCC, GND, SCL (clock), SCA (data)
Many I2C buses are in your laptop, even within HDMI and VGA ports.
They are often used for connecting sensors, e.g., for temperature.
Linux: i2c-tools

Protocols
Example SPI flash: Commands for reading and writing data
We load from SPI flash in oreboot on the Allwinner D1 SoC.

Conventions and Standards
Example: USB
https://www.electronics‑notes.com/articles/connectivity/usb‑
universal‑serial‑bus/basics‑tutorial.php
Those make up interfaces, enabling amarket through compatibility.

https://en.wikipedia.org/wiki/Bus_(computing)
https://www.electronics-notes.com/articles/connectivity/usb-universal-serial-bus/basics-tutorial.php
https://www.electronics-notes.com/articles/connectivity/usb-universal-serial-bus/basics-tutorial.php


Computer Architecture: Buses
https://en.wikipedia.org/wiki/Bus_(computing)

Wires
Example I2C: VCC, GND, SCL (clock), SCA (data)
Many I2C buses are in your laptop, even within HDMI and VGA ports.
They are often used for connecting sensors, e.g., for temperature.
Linux: i2c-tools

Protocols
Example SPI flash: Commands for reading and writing data
We load from SPI flash in oreboot on the Allwinner D1 SoC.

Conventions and Standards
Example: USB
https://www.electronics‑notes.com/articles/connectivity/usb‑
universal‑serial‑bus/basics‑tutorial.php
Those make up interfaces, enabling amarket through compatibility.

https://en.wikipedia.org/wiki/Bus_(computing)
https://www.electronics-notes.com/articles/connectivity/usb-universal-serial-bus/basics-tutorial.php
https://www.electronics-notes.com/articles/connectivity/usb-universal-serial-bus/basics-tutorial.php


Computer Architecture: Buses
https://en.wikipedia.org/wiki/Bus_(computing)

Wires
Example I2C: VCC, GND, SCL (clock), SCA (data)
Many I2C buses are in your laptop, even within HDMI and VGA ports.
They are often used for connecting sensors, e.g., for temperature.
Linux: i2c-tools

Protocols
Example SPI flash: Commands for reading and writing data
We load from SPI flash in oreboot on the Allwinner D1 SoC.

Conventions and Standards
Example: USB
https://www.electronics‑notes.com/articles/connectivity/usb‑
universal‑serial‑bus/basics‑tutorial.php
Those make up interfaces, enabling amarket through compatibility.

https://en.wikipedia.org/wiki/Bus_(computing)
https://www.electronics-notes.com/articles/connectivity/usb-universal-serial-bus/basics-tutorial.php
https://www.electronics-notes.com/articles/connectivity/usb-universal-serial-bus/basics-tutorial.php


Internal Buses

There are even buseswithin chips.

Those buses connect the components
of a chip, also called blocks or cores.

Example:
Advanced High‑Performance Bus (AHB)

AHB is part of AMBA (Advanced Microcontroller Bus Architecture).

https://developer.arm.com/Architectures/AMBA

https://developer.arm.com/Architectures/AMBA


Internal Buses

There are even buseswithin chips.

Those buses connect the components
of a chip, also called blocks or cores.

Example:
Advanced High‑Performance Bus (AHB)

AHB is part of AMBA (Advanced Microcontroller Bus Architecture).

https://developer.arm.com/Architectures/AMBA

https://developer.arm.com/Architectures/AMBA


Internal Buses

There are even buseswithin chips.

Those buses connect the components
of a chip, also called blocks or cores.

Example:
Advanced High‑Performance Bus (AHB)

AHB is part of AMBA (Advanced Microcontroller Bus Architecture).

https://developer.arm.com/Architectures/AMBA

https://developer.arm.com/Architectures/AMBA


Internal Buses

There are even buseswithin chips.

Those buses connect the components
of a chip, also called blocks or cores.

Example:
Advanced High‑Performance Bus (AHB)

AHB is part of AMBA (Advanced Microcontroller Bus Architecture).

https://developer.arm.com/Architectures/AMBA

https://developer.arm.com/Architectures/AMBA


Complexity in Computers

x86 (CISC, very complex)
https://www.intel.com/content/www/us/en/developer/articles/technic
al/intel‑sdm.html

ARM (yet somewhat complex)
https://www.arm.com/glossary/risc

A Reduced Instruction Set Computer is a type of microprocessor
architecture that utilizes a small, highly‑optimized set of instruc‑
tions

RISC‑V (open specifications)
https://riscv.org/announcements/2022/12/risc‑v‑sees‑significant‑
growth‑and‑technical‑progress‑in‑2022‑with‑billions‑of‑risc‑v‑cores‑
in‑market/

RISC‑V combines a modular technical approach with an open,
royalty‑free license model

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.arm.com/glossary/risc
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/


Complexity in Computers
x86 (CISC, very complex)
https://www.intel.com/content/www/us/en/developer/articles/technic
al/intel‑sdm.html

ARM (yet somewhat complex)
https://www.arm.com/glossary/risc

A Reduced Instruction Set Computer is a type of microprocessor
architecture that utilizes a small, highly‑optimized set of instruc‑
tions

RISC‑V (open specifications)
https://riscv.org/announcements/2022/12/risc‑v‑sees‑significant‑
growth‑and‑technical‑progress‑in‑2022‑with‑billions‑of‑risc‑v‑cores‑
in‑market/

RISC‑V combines a modular technical approach with an open,
royalty‑free license model

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.arm.com/glossary/risc
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/


Complexity in Computers
x86 (CISC, very complex)
https://www.intel.com/content/www/us/en/developer/articles/technic
al/intel‑sdm.html

ARM (yet somewhat complex)
https://www.arm.com/glossary/risc

A Reduced Instruction Set Computer is a type of microprocessor
architecture that utilizes a small, highly‑optimized set of instruc‑
tions

RISC‑V (open specifications)
https://riscv.org/announcements/2022/12/risc‑v‑sees‑significant‑
growth‑and‑technical‑progress‑in‑2022‑with‑billions‑of‑risc‑v‑cores‑
in‑market/

RISC‑V combines a modular technical approach with an open,
royalty‑free license model

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.arm.com/glossary/risc
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/


Complexity in Computers
x86 (CISC, very complex)
https://www.intel.com/content/www/us/en/developer/articles/technic
al/intel‑sdm.html

ARM (yet somewhat complex)
https://www.arm.com/glossary/risc

A Reduced Instruction Set Computer is a type of microprocessor
architecture that utilizes a small, highly‑optimized set of instruc‑
tions

RISC‑V (open specifications)
https://riscv.org/announcements/2022/12/risc‑v‑sees‑significant‑
growth‑and‑technical‑progress‑in‑2022‑with‑billions‑of‑risc‑v‑cores‑
in‑market/

RISC‑V combines a modular technical approach with an open,
royalty‑free license model

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.arm.com/glossary/risc
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/


Call for Simplicity: Reduction

Developers are drawn to complexity like moths to a flame often
with the same result.

https://nealford.com/books/productiveprogrammer

Complexity can be inherent or given, e.g., in Physics.

Note: We discover physics, we do not invent it!

When it gets toomuch, themeasure is reduction.

The opposite is Simplicity.

https://nealford.com/books/productiveprogrammer


Call for Simplicity: Reduction
Developers are drawn to complexity like moths to a flame often
with the same result.

https://nealford.com/books/productiveprogrammer

Complexity can be inherent or given, e.g., in Physics.

Note: We discover physics, we do not invent it!

When it gets toomuch, themeasure is reduction.

The opposite is Simplicity.

https://nealford.com/books/productiveprogrammer


Call for Simplicity: Reduction
Developers are drawn to complexity like moths to a flame often
with the same result.

https://nealford.com/books/productiveprogrammer

Complexity can be inherent or given, e.g., in Physics.

Note: We discover physics, we do not invent it!

When it gets toomuch, themeasure is reduction.

The opposite is Simplicity.

https://nealford.com/books/productiveprogrammer


Call for Simplicity: Reduction
Developers are drawn to complexity like moths to a flame often
with the same result.

https://nealford.com/books/productiveprogrammer

Complexity can be inherent or given, e.g., in Physics.

Note: We discover physics, we do not invent it!

When it gets toomuch, themeasure is reduction.

The opposite is Simplicity.

https://nealford.com/books/productiveprogrammer


Call for Simplicity: Reduction
Developers are drawn to complexity like moths to a flame often
with the same result.

https://nealford.com/books/productiveprogrammer

Complexity can be inherent or given, e.g., in Physics.

Note: We discover physics, we do not invent it!

When it gets toomuch, themeasure is reduction.

The opposite is Simplicity.

https://nealford.com/books/productiveprogrammer


Call for Simplicity: Reduction
Developers are drawn to complexity like moths to a flame often
with the same result.

https://nealford.com/books/productiveprogrammer

Complexity can be inherent or given, e.g., in Physics.

Note: We discover physics, we do not invent it!

When it gets toomuch, themeasure is reduction.

The opposite is Simplicity.

https://nealford.com/books/productiveprogrammer


Software Architecture

Software architecture is for developers to live inside.

Kevlin Henney, Refactoring Is Not Just Clickbait, NDC Oslo 2022
https://www.youtube.com/watch?v=piUesxuZkIQ&t=546

Most architects and developers pursue the Latest and Greatest
with great fervor, yet the history of engineering, including soft‑
ware projects, contains rich lessons that we risk repeating ad
nauseam.

https://joyofcoding.org/2017/speaker/neal‑ford/

https://www.youtube.com/watch?v=piUesxuZkIQ&t=546
https://joyofcoding.org/2017/speaker/neal-ford/


Software Architecture

Software architecture is for developers to live inside.

Kevlin Henney, Refactoring Is Not Just Clickbait, NDC Oslo 2022
https://www.youtube.com/watch?v=piUesxuZkIQ&t=546

Most architects and developers pursue the Latest and Greatest
with great fervor, yet the history of engineering, including soft‑
ware projects, contains rich lessons that we risk repeating ad
nauseam.

https://joyofcoding.org/2017/speaker/neal‑ford/

https://www.youtube.com/watch?v=piUesxuZkIQ&t=546
https://joyofcoding.org/2017/speaker/neal-ford/


Software Architecture

Software architecture is for developers to live inside.

Kevlin Henney, Refactoring Is Not Just Clickbait, NDC Oslo 2022
https://www.youtube.com/watch?v=piUesxuZkIQ&t=546

Most architects and developers pursue the Latest and Greatest
with great fervor, yet the history of engineering, including soft‑
ware projects, contains rich lessons that we risk repeating ad
nauseam.

https://joyofcoding.org/2017/speaker/neal‑ford/

https://www.youtube.com/watch?v=piUesxuZkIQ&t=546
https://joyofcoding.org/2017/speaker/neal-ford/


UEFI vs NERF and FASR
https://uefi.org/about

These extensible, globally‑recognized specifications bring new
functionality and enhanced security to the evolution of devices,
firmware and operating systems, as well as facilitate interoper‑
ability between platforms and systems that comply with next‑
generation technologies.

https://trmm.net/NERF/
The LinuxBoot project (formerly NERF) is a collaboration be‑
tweenGoogle, Facebook, HorizonComputingSolutions, andTwo
Sigma that aims to build an open, customizable, and slightly
more secure firmware for server machines based on Linux.

https://learn.microsoft.com/en‑us/windows‑
hardware/drivers/bringup/firmware‑attack‑surface‑reduction

Microsoft has started working with partners to overcome the
compatibility issues

https://uefi.org/about
https://trmm.net/NERF/
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/firmware-attack-surface-reduction
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/firmware-attack-surface-reduction


UEFI vs NERF and FASR
https://uefi.org/about

These extensible, globally‑recognized specifications bring new
functionality and enhanced security to the evolution of devices,
firmware and operating systems, as well as facilitate interoper‑
ability between platforms and systems that comply with next‑
generation technologies.

https://trmm.net/NERF/
The LinuxBoot project (formerly NERF) is a collaboration be‑
tweenGoogle, Facebook, HorizonComputingSolutions, andTwo
Sigma that aims to build an open, customizable, and slightly
more secure firmware for server machines based on Linux.

https://learn.microsoft.com/en‑us/windows‑
hardware/drivers/bringup/firmware‑attack‑surface‑reduction

Microsoft has started working with partners to overcome the
compatibility issues

https://uefi.org/about
https://trmm.net/NERF/
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/firmware-attack-surface-reduction
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/firmware-attack-surface-reduction


UEFI vs NERF and FASR
https://uefi.org/about

These extensible, globally‑recognized specifications bring new
functionality and enhanced security to the evolution of devices,
firmware and operating systems, as well as facilitate interoper‑
ability between platforms and systems that comply with next‑
generation technologies.

https://trmm.net/NERF/
The LinuxBoot project (formerly NERF) is a collaboration be‑
tweenGoogle, Facebook, HorizonComputingSolutions, andTwo
Sigma that aims to build an open, customizable, and slightly
more secure firmware for server machines based on Linux.

https://learn.microsoft.com/en‑us/windows‑
hardware/drivers/bringup/firmware‑attack‑surface‑reduction

Microsoft has started working with partners to overcome the
compatibility issues

https://uefi.org/about
https://trmm.net/NERF/
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/firmware-attack-surface-reduction
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/firmware-attack-surface-reduction


Layers and Interfaces



The Problemwith Layers

Comic by Randall Munroe, CC BY‑NC 2.5
https://xkcd.com/2347/

Layering implies interfaces.
Interfaces are hard to design.
Sometimes unnecessary, but…
… spark creativity in other
places.

Example LinuxBIOS: Put Linux in
flash because the vendor BIOS
did not work.
Note: LinuxBIOS has evolved
into coreboot.

Example LinuxBoot: Put Linux
in SPI flash to replace part of
vendor UEFI PI (platform init).

https://xkcd.com/2347/


The Problemwith Layers

Comic by Randall Munroe, CC BY‑NC 2.5
https://xkcd.com/2347/

Layering implies interfaces.
Interfaces are hard to design.
Sometimes unnecessary, but…
… spark creativity in other
places.

Example LinuxBIOS: Put Linux in
flash because the vendor BIOS
did not work.
Note: LinuxBIOS has evolved
into coreboot.

Example LinuxBoot: Put Linux
in SPI flash to replace part of
vendor UEFI PI (platform init).

https://xkcd.com/2347/


The Problemwith Layers

Comic by Randall Munroe, CC BY‑NC 2.5
https://xkcd.com/2347/

Layering implies interfaces.

Interfaces are hard to design.
Sometimes unnecessary, but…
… spark creativity in other
places.

Example LinuxBIOS: Put Linux in
flash because the vendor BIOS
did not work.
Note: LinuxBIOS has evolved
into coreboot.

Example LinuxBoot: Put Linux
in SPI flash to replace part of
vendor UEFI PI (platform init).

https://xkcd.com/2347/


The Problemwith Layers

Comic by Randall Munroe, CC BY‑NC 2.5
https://xkcd.com/2347/

Layering implies interfaces.
Interfaces are hard to design.

Sometimes unnecessary, but…
… spark creativity in other
places.

Example LinuxBIOS: Put Linux in
flash because the vendor BIOS
did not work.
Note: LinuxBIOS has evolved
into coreboot.

Example LinuxBoot: Put Linux
in SPI flash to replace part of
vendor UEFI PI (platform init).

https://xkcd.com/2347/


The Problemwith Layers

Comic by Randall Munroe, CC BY‑NC 2.5
https://xkcd.com/2347/

Layering implies interfaces.
Interfaces are hard to design.
Sometimes unnecessary, but…

… spark creativity in other
places.

Example LinuxBIOS: Put Linux in
flash because the vendor BIOS
did not work.
Note: LinuxBIOS has evolved
into coreboot.

Example LinuxBoot: Put Linux
in SPI flash to replace part of
vendor UEFI PI (platform init).

https://xkcd.com/2347/


The Problemwith Layers

Comic by Randall Munroe, CC BY‑NC 2.5
https://xkcd.com/2347/

Layering implies interfaces.
Interfaces are hard to design.
Sometimes unnecessary, but…
… spark creativity in other
places.

Example LinuxBIOS: Put Linux in
flash because the vendor BIOS
did not work.
Note: LinuxBIOS has evolved
into coreboot.

Example LinuxBoot: Put Linux
in SPI flash to replace part of
vendor UEFI PI (platform init).

https://xkcd.com/2347/


The Problemwith Layers

Comic by Randall Munroe, CC BY‑NC 2.5
https://xkcd.com/2347/

Layering implies interfaces.
Interfaces are hard to design.
Sometimes unnecessary, but…
… spark creativity in other
places.

Example LinuxBIOS: Put Linux in
flash because the vendor BIOS
did not work.
Note: LinuxBIOS has evolved
into coreboot.

Example LinuxBoot: Put Linux
in SPI flash to replace part of
vendor UEFI PI (platform init).

https://xkcd.com/2347/


The Problemwith Layers

Comic by Randall Munroe, CC BY‑NC 2.5
https://xkcd.com/2347/

Layering implies interfaces.
Interfaces are hard to design.
Sometimes unnecessary, but…
… spark creativity in other
places.

Example LinuxBIOS: Put Linux in
flash because the vendor BIOS
did not work.
Note: LinuxBIOS has evolved
into coreboot.

Example LinuxBoot: Put Linux
in SPI flash to replace part of
vendor UEFI PI (platform init).

https://xkcd.com/2347/


Firmware and Ownership

Pico Host Boot Loader
phbl is the program run from the x86 reset vector that loads and
invokes the phase1 host operating system package

https://github.com/oxidecomputer/phbl

OSF (Open System Firmware)
https://www.opencompute.org/projects/open‑system‑firmware

Open system firmware is an open development project, the goal
ofwhich is toallowOCPowners to “own their firmware” – tomove
the point of control of firmware to the system owner.

Composition and Layering
Layers grow vertically.
Components can live on the same layer.
Not having ownership results in being stuck with layers.

https://github.com/oxidecomputer/phbl
https://www.opencompute.org/projects/open-system-firmware


Firmware and Ownership

Pico Host Boot Loader
phbl is the program run from the x86 reset vector that loads and
invokes the phase1 host operating system package

https://github.com/oxidecomputer/phbl

OSF (Open System Firmware)
https://www.opencompute.org/projects/open‑system‑firmware

Open system firmware is an open development project, the goal
ofwhich is toallowOCPowners to “own their firmware” – tomove
the point of control of firmware to the system owner.

Composition and Layering
Layers grow vertically.
Components can live on the same layer.
Not having ownership results in being stuck with layers.

https://github.com/oxidecomputer/phbl
https://www.opencompute.org/projects/open-system-firmware


Firmware and Ownership

Pico Host Boot Loader
phbl is the program run from the x86 reset vector that loads and
invokes the phase1 host operating system package

https://github.com/oxidecomputer/phbl

OSF (Open System Firmware)
https://www.opencompute.org/projects/open‑system‑firmware

Open system firmware is an open development project, the goal
ofwhich is toallowOCPowners to “own their firmware” – tomove
the point of control of firmware to the system owner.

Composition and Layering
Layers grow vertically.
Components can live on the same layer.
Not having ownership results in being stuck with layers.

https://github.com/oxidecomputer/phbl
https://www.opencompute.org/projects/open-system-firmware


Firmware and Ownership

Pico Host Boot Loader
phbl is the program run from the x86 reset vector that loads and
invokes the phase1 host operating system package

https://github.com/oxidecomputer/phbl

OSF (Open System Firmware)
https://www.opencompute.org/projects/open‑system‑firmware

Open system firmware is an open development project, the goal
ofwhich is toallowOCPowners to “own their firmware” – tomove
the point of control of firmware to the system owner.

Composition and Layering

Layers grow vertically.
Components can live on the same layer.
Not having ownership results in being stuck with layers.

https://github.com/oxidecomputer/phbl
https://www.opencompute.org/projects/open-system-firmware


Firmware and Ownership

Pico Host Boot Loader
phbl is the program run from the x86 reset vector that loads and
invokes the phase1 host operating system package

https://github.com/oxidecomputer/phbl

OSF (Open System Firmware)
https://www.opencompute.org/projects/open‑system‑firmware

Open system firmware is an open development project, the goal
ofwhich is toallowOCPowners to “own their firmware” – tomove
the point of control of firmware to the system owner.

Composition and Layering
Layers grow vertically.

Components can live on the same layer.
Not having ownership results in being stuck with layers.

https://github.com/oxidecomputer/phbl
https://www.opencompute.org/projects/open-system-firmware


Firmware and Ownership

Pico Host Boot Loader
phbl is the program run from the x86 reset vector that loads and
invokes the phase1 host operating system package

https://github.com/oxidecomputer/phbl

OSF (Open System Firmware)
https://www.opencompute.org/projects/open‑system‑firmware

Open system firmware is an open development project, the goal
ofwhich is toallowOCPowners to “own their firmware” – tomove
the point of control of firmware to the system owner.

Composition and Layering
Layers grow vertically.
Components can live on the same layer.

Not having ownership results in being stuck with layers.

https://github.com/oxidecomputer/phbl
https://www.opencompute.org/projects/open-system-firmware


Firmware and Ownership

Pico Host Boot Loader
phbl is the program run from the x86 reset vector that loads and
invokes the phase1 host operating system package

https://github.com/oxidecomputer/phbl

OSF (Open System Firmware)
https://www.opencompute.org/projects/open‑system‑firmware

Open system firmware is an open development project, the goal
ofwhich is toallowOCPowners to “own their firmware” – tomove
the point of control of firmware to the system owner.

Composition and Layering
Layers grow vertically.
Components can live on the same layer.
Not having ownership results in being stuck with layers.

https://github.com/oxidecomputer/phbl
https://www.opencompute.org/projects/open-system-firmware


Intel’s Universal Scalable Firmware3
Note: (s)FSP components
are distributed in binary
form, hard to audit or fix.

They make up a large
portion of the code and bury
the understanding of the
platform.
Their APIs carry potential for
error and vulnerabilities.

Image license: CC BY 4.0

3https://universalscalablefirmware.github.io/documentation/1_terminology.html

https://universalscalablefirmware.github.io/documentation/1_terminology.html


Silicon Interface Design

https://osfw.foundation/workstreams/silicon‑interface‑design/

Integrating binary blobs that handle parts of the silicon initial‑
ization is a common technique within the open‑source firmware
ecosystem to retain control over parts of the code, from a SoC
vendor perspective.

https://osfw.foundation/workstreams/silicon-interface-design/


Silicon Interface Design

https://osfw.foundation/workstreams/silicon‑interface‑design/

Integrating binary blobs that handle parts of the silicon initial‑
ization is a common technique within the open‑source firmware
ecosystem to retain control over parts of the code, from a SoC
vendor perspective.

https://osfw.foundation/workstreams/silicon-interface-design/


oreboot
oreboot is firmware written in Rust.

https://github.com/oreboot

Rust logo under CC BY 4.0, https://github.com/rust‑lang/rust‑artwork

Ferris the crab from https://rustacean.net/

https://github.com/oreboot
https://github.com/rust-lang/rust-artwork
https://rustacean.net/


oreboot Stages

XIP/SRAM
early init, MMIO
PLLs, clocks, GPIOs
UART, say hello
DRAM controller
storage setup

▶ SPI flash, SD card,
eMMC…

DRAM
what didn’t fit in SRAM

▶ extract payload
▶ set up handlers

run payload (done)

https://github.com/oreboot/oreboot/blob/main/Documentation/boot‑
flow.md

https://github.com/oreboot/oreboot/blob/main/Documentation/boot-flow.md
https://github.com/oreboot/oreboot/blob/main/Documentation/boot-flow.md


oreboot Stages
XIP/SRAM

early init, MMIO
PLLs, clocks, GPIOs
UART, say hello
DRAM controller
storage setup

▶ SPI flash, SD card,
eMMC…

DRAM
what didn’t fit in SRAM

▶ extract payload
▶ set up handlers

run payload (done)

https://github.com/oreboot/oreboot/blob/main/Documentation/boot‑
flow.md

https://github.com/oreboot/oreboot/blob/main/Documentation/boot-flow.md
https://github.com/oreboot/oreboot/blob/main/Documentation/boot-flow.md


Firmware Runtime Services

Idea: Define interfaces in a software part of a platform.

Whoops! They also present an attack surface.



Firmware Runtime Services

Idea: Define interfaces in a software part of a platform.

Whoops! They also present an attack surface.



Firmware Runtime Services

Idea: Define interfaces in a software part of a platform.

Whoops! They also present an attack surface.



RISC‑V Runtime Services

Runtime Services are listed in platform specs, referencing the SBI spec.
https://github.com/riscv/riscv‑platform‑specs

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Ports need to be written per platform (core/SoC/board).

RISC‑V PRS TG (Platform Runtime Services Task Group) is concerned
with specs around ACPI, UEFI, SBI, and possible other interfaces.

https://lists.riscv.org/g/tech‑prs

https://github.com/riscv‑admin/prs

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://lists.riscv.org/g/tech-prs
https://github.com/riscv-admin/prs


RISC‑V Runtime Services
Runtime Services are listed in platform specs, referencing the SBI spec.
https://github.com/riscv/riscv‑platform‑specs

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Ports need to be written per platform (core/SoC/board).

RISC‑V PRS TG (Platform Runtime Services Task Group) is concerned
with specs around ACPI, UEFI, SBI, and possible other interfaces.

https://lists.riscv.org/g/tech‑prs

https://github.com/riscv‑admin/prs

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://lists.riscv.org/g/tech-prs
https://github.com/riscv-admin/prs


RISC‑V Runtime Services
Runtime Services are listed in platform specs, referencing the SBI spec.
https://github.com/riscv/riscv‑platform‑specs

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Ports need to be written per platform (core/SoC/board).

RISC‑V PRS TG (Platform Runtime Services Task Group) is concerned
with specs around ACPI, UEFI, SBI, and possible other interfaces.

https://lists.riscv.org/g/tech‑prs

https://github.com/riscv‑admin/prs

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://lists.riscv.org/g/tech-prs
https://github.com/riscv-admin/prs


RISC‑V Runtime Services
Runtime Services are listed in platform specs, referencing the SBI spec.
https://github.com/riscv/riscv‑platform‑specs

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Ports need to be written per platform (core/SoC/board).

RISC‑V PRS TG (Platform Runtime Services Task Group) is concerned
with specs around ACPI, UEFI, SBI, and possible other interfaces.

https://lists.riscv.org/g/tech‑prs

https://github.com/riscv‑admin/prs

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://lists.riscv.org/g/tech-prs
https://github.com/riscv-admin/prs


RISC‑V Runtime Services
Runtime Services are listed in platform specs, referencing the SBI spec.
https://github.com/riscv/riscv‑platform‑specs

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Ports need to be written per platform (core/SoC/board).

RISC‑V PRS TG (Platform Runtime Services Task Group) is concerned
with specs around ACPI, UEFI, SBI, and possible other interfaces.

https://lists.riscv.org/g/tech‑prs

https://github.com/riscv‑admin/prs

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://lists.riscv.org/g/tech-prs
https://github.com/riscv-admin/prs


RISC‑V Runtime Services
Runtime Services are listed in platform specs, referencing the SBI spec.
https://github.com/riscv/riscv‑platform‑specs

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Ports need to be written per platform (core/SoC/board).

RISC‑V PRS TG (Platform Runtime Services Task Group) is concerned
with specs around ACPI, UEFI, SBI, and possible other interfaces.

https://lists.riscv.org/g/tech‑prs

https://github.com/riscv‑admin/prs

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://lists.riscv.org/g/tech-prs
https://github.com/riscv-admin/prs


RISC‑V Environment Calls

Arguments and extension/function are passed through A (argument)
registers.

Then the call is performed via the ECALL instruction.

Example, writing a B character to the serial console:

li a0, 'B' # argument
li a7, 0x01 # extension "console putchar"
ecall



RISC‑V Environment Calls

Arguments and extension/function are passed through A (argument)
registers.

Then the call is performed via the ECALL instruction.

Example, writing a B character to the serial console:

li a0, 'B' # argument
li a7, 0x01 # extension "console putchar"
ecall



RISC‑V Environment Calls

Arguments and extension/function are passed through A (argument)
registers.

Then the call is performed via the ECALL instruction.

Example, writing a B character to the serial console:

li a0, 'B' # argument
li a7, 0x01 # extension "console putchar"
ecall



RISC‑V Environment Calls

Arguments and extension/function are passed through A (argument)
registers.

Then the call is performed via the ECALL instruction.

Example, writing a B character to the serial console:

li a0, 'B' # argument
li a7, 0x01 # extension "console putchar"
ecall



From Registers to Memory Access

A single value read from a register and written to a UART seems
comprehensible.

What if that value is a memory pointer for privileged access?

This enables memory safety issues we have had for decades.

Best solution: Remove the idea from your design.

What else can we do?



From Registers to Memory Access

A single value read from a register and written to a UART seems
comprehensible.

What if that value is a memory pointer for privileged access?

This enables memory safety issues we have had for decades.

Best solution: Remove the idea from your design.

What else can we do?



From Registers to Memory Access

A single value read from a register and written to a UART seems
comprehensible.

What if that value is a memory pointer for privileged access?

This enables memory safety issues we have had for decades.

Best solution: Remove the idea from your design.

What else can we do?



From Registers to Memory Access

A single value read from a register and written to a UART seems
comprehensible.

What if that value is a memory pointer for privileged access?

This enables memory safety issues we have had for decades.

Best solution: Remove the idea from your design.

What else can we do?



From Registers to Memory Access

A single value read from a register and written to a UART seems
comprehensible.

What if that value is a memory pointer for privileged access?

This enables memory safety issues we have had for decades.

Best solution: Remove the idea from your design.

What else can we do?



From Registers to Memory Access

A single value read from a register and written to a UART seems
comprehensible.

What if that value is a memory pointer for privileged access?

This enables memory safety issues we have had for decades.

Best solution: Remove the idea from your design.

What else can we do?



Research & Development



Capabilities

One of the key words that describes capabilities is unforgeable.
A pointer in C is forgeable, because untrusted code could cast an
integer to a pointer, thus forging access to whatever that pointer
value points to.

https://github.com/bytecodealliance/wasmtime/blob/main/docs/WA
SI‑capabilities.md

CHERI (Capability Hardware Enhanced RISC Instructions)
is a joint research project of SRI International and the University
of Cambridge to revisit fundamental design choices in hardware
and software to dramatically improve system security

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://community.arm.com/arm‑community‑blogs/b/architectures‑
and‑processors‑blog/posts/creating‑the‑morello‑technology‑
demonstrator

https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-capabilities.md
https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-capabilities.md
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/creating-the-morello-technology-demonstrator
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/creating-the-morello-technology-demonstrator
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/creating-the-morello-technology-demonstrator


Capabilities
One of the key words that describes capabilities is unforgeable.
A pointer in C is forgeable, because untrusted code could cast an
integer to a pointer, thus forging access to whatever that pointer
value points to.

https://github.com/bytecodealliance/wasmtime/blob/main/docs/WA
SI‑capabilities.md

CHERI (Capability Hardware Enhanced RISC Instructions)
is a joint research project of SRI International and the University
of Cambridge to revisit fundamental design choices in hardware
and software to dramatically improve system security

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://community.arm.com/arm‑community‑blogs/b/architectures‑
and‑processors‑blog/posts/creating‑the‑morello‑technology‑
demonstrator

https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-capabilities.md
https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-capabilities.md
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/creating-the-morello-technology-demonstrator
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/creating-the-morello-technology-demonstrator
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/creating-the-morello-technology-demonstrator


Capabilities
One of the key words that describes capabilities is unforgeable.
A pointer in C is forgeable, because untrusted code could cast an
integer to a pointer, thus forging access to whatever that pointer
value points to.

https://github.com/bytecodealliance/wasmtime/blob/main/docs/WA
SI‑capabilities.md

CHERI (Capability Hardware Enhanced RISC Instructions)
is a joint research project of SRI International and the University
of Cambridge to revisit fundamental design choices in hardware
and software to dramatically improve system security

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://community.arm.com/arm‑community‑blogs/b/architectures‑
and‑processors‑blog/posts/creating‑the‑morello‑technology‑
demonstrator

https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-capabilities.md
https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-capabilities.md
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/creating-the-morello-technology-demonstrator
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/creating-the-morello-technology-demonstrator
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/creating-the-morello-technology-demonstrator


Capabilities
One of the key words that describes capabilities is unforgeable.
A pointer in C is forgeable, because untrusted code could cast an
integer to a pointer, thus forging access to whatever that pointer
value points to.

https://github.com/bytecodealliance/wasmtime/blob/main/docs/WA
SI‑capabilities.md

CHERI (Capability Hardware Enhanced RISC Instructions)
is a joint research project of SRI International and the University
of Cambridge to revisit fundamental design choices in hardware
and software to dramatically improve system security

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://community.arm.com/arm‑community‑blogs/b/architectures‑
and‑processors‑blog/posts/creating‑the‑morello‑technology‑
demonstrator

https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-capabilities.md
https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-capabilities.md
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/creating-the-morello-technology-demonstrator
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/creating-the-morello-technology-demonstrator
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/creating-the-morello-technology-demonstrator


Defending Software

What can be done in software, what can go in hardware?

Answering this question needs evaluation and experience.

Generic Tagging for RISC‑V Binaries
COGENT removes the burdenof compiler development fromRISC‑
V hardware defenses that rely on embedding instruction meta‑
data into binaries

https://arxiv.org/pdf/2212.05614.pdf

https://arxiv.org/pdf/2212.05614.pdf


Defending Software

What can be done in software, what can go in hardware?

Answering this question needs evaluation and experience.

Generic Tagging for RISC‑V Binaries
COGENT removes the burdenof compiler development fromRISC‑
V hardware defenses that rely on embedding instruction meta‑
data into binaries

https://arxiv.org/pdf/2212.05614.pdf

https://arxiv.org/pdf/2212.05614.pdf


Defending Software

What can be done in software, what can go in hardware?

Answering this question needs evaluation and experience.

Generic Tagging for RISC‑V Binaries
COGENT removes the burdenof compiler development fromRISC‑
V hardware defenses that rely on embedding instruction meta‑
data into binaries

https://arxiv.org/pdf/2212.05614.pdf

https://arxiv.org/pdf/2212.05614.pdf


Defending Software

What can be done in software, what can go in hardware?

Answering this question needs evaluation and experience.

Generic Tagging for RISC‑V Binaries
COGENT removes the burdenof compiler development fromRISC‑
V hardware defenses that rely on embedding instruction meta‑
data into binaries

https://arxiv.org/pdf/2212.05614.pdf

https://arxiv.org/pdf/2212.05614.pdf


Hardware Vulnerabilities

Meltdown and Spectre
exploit critical vulnerabilities in modern processors.

https://meltdownattack.com/

Microarchitectural fault attacks
exploit the physical imperfections of modern computer systems.

Software‑based Microarchitectural Attacks, Daniel Gruss, PhD Thesis
https://arxiv.org/pdf/1706.05973.pdf

Micro‑architectural side‑channel attacks refer to a side‑channel
attack that exploit information leakage from the hardware in‑
frastructure itself.

https://orenlab.sise.bgu.ac.il/AttacksonImplementationsCourseBook/
06_Cache_Attacks_Guest_Lecture

https://meltdownattack.com/
https://arxiv.org/pdf/1706.05973.pdf
https://orenlab.sise.bgu.ac.il/AttacksonImplementationsCourseBook/06_Cache_Attacks_Guest_Lecture
https://orenlab.sise.bgu.ac.il/AttacksonImplementationsCourseBook/06_Cache_Attacks_Guest_Lecture


Hardware Vulnerabilities

Meltdown and Spectre
exploit critical vulnerabilities in modern processors.

https://meltdownattack.com/

Microarchitectural fault attacks
exploit the physical imperfections of modern computer systems.

Software‑based Microarchitectural Attacks, Daniel Gruss, PhD Thesis
https://arxiv.org/pdf/1706.05973.pdf

Micro‑architectural side‑channel attacks refer to a side‑channel
attack that exploit information leakage from the hardware in‑
frastructure itself.

https://orenlab.sise.bgu.ac.il/AttacksonImplementationsCourseBook/
06_Cache_Attacks_Guest_Lecture

https://meltdownattack.com/
https://arxiv.org/pdf/1706.05973.pdf
https://orenlab.sise.bgu.ac.il/AttacksonImplementationsCourseBook/06_Cache_Attacks_Guest_Lecture
https://orenlab.sise.bgu.ac.il/AttacksonImplementationsCourseBook/06_Cache_Attacks_Guest_Lecture


Hardware Vulnerabilities

Meltdown and Spectre
exploit critical vulnerabilities in modern processors.

https://meltdownattack.com/

Microarchitectural fault attacks
exploit the physical imperfections of modern computer systems.

Software‑based Microarchitectural Attacks, Daniel Gruss, PhD Thesis
https://arxiv.org/pdf/1706.05973.pdf

Micro‑architectural side‑channel attacks refer to a side‑channel
attack that exploit information leakage from the hardware in‑
frastructure itself.

https://orenlab.sise.bgu.ac.il/AttacksonImplementationsCourseBook/
06_Cache_Attacks_Guest_Lecture

https://meltdownattack.com/
https://arxiv.org/pdf/1706.05973.pdf
https://orenlab.sise.bgu.ac.il/AttacksonImplementationsCourseBook/06_Cache_Attacks_Guest_Lecture
https://orenlab.sise.bgu.ac.il/AttacksonImplementationsCourseBook/06_Cache_Attacks_Guest_Lecture


Hardware Vulnerabilities

Meltdown and Spectre
exploit critical vulnerabilities in modern processors.

https://meltdownattack.com/

Microarchitectural fault attacks
exploit the physical imperfections of modern computer systems.

Software‑based Microarchitectural Attacks, Daniel Gruss, PhD Thesis
https://arxiv.org/pdf/1706.05973.pdf

Micro‑architectural side‑channel attacks refer to a side‑channel
attack that exploit information leakage from the hardware in‑
frastructure itself.

https://orenlab.sise.bgu.ac.il/AttacksonImplementationsCourseBook/
06_Cache_Attacks_Guest_Lecture

https://meltdownattack.com/
https://arxiv.org/pdf/1706.05973.pdf
https://orenlab.sise.bgu.ac.il/AttacksonImplementationsCourseBook/06_Cache_Attacks_Guest_Lecture
https://orenlab.sise.bgu.ac.il/AttacksonImplementationsCourseBook/06_Cache_Attacks_Guest_Lecture


Hardware Security

Trusted Execution Environment (TEE)
The TEE is a secure area of the main processor of a connected
device that ensures sensitive data is stored, processed and pro‑
tected in an isolated and trusted environment. As such, it offers
protection against software attacks generated in the Rich Oper‑
ating System (Rich OS).

https://globalplatform.org/wp‑content/uploads/2018/05/Introduction‑
to‑Trusted‑Execution‑Environment‑15May2018.pdf

Confidential Computing
Idea: Process data on remote infrastructure without exposing it to the
provider or other parties involved.
https://confidentialcomputing.io/

https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://confidentialcomputing.io/


Hardware Security

Trusted Execution Environment (TEE)
The TEE is a secure area of the main processor of a connected
device that ensures sensitive data is stored, processed and pro‑
tected in an isolated and trusted environment. As such, it offers
protection against software attacks generated in the Rich Oper‑
ating System (Rich OS).

https://globalplatform.org/wp‑content/uploads/2018/05/Introduction‑
to‑Trusted‑Execution‑Environment‑15May2018.pdf

Confidential Computing
Idea: Process data on remote infrastructure without exposing it to the
provider or other parties involved.
https://confidentialcomputing.io/

https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://confidentialcomputing.io/


Hardware Security

Trusted Execution Environment (TEE)
The TEE is a secure area of the main processor of a connected
device that ensures sensitive data is stored, processed and pro‑
tected in an isolated and trusted environment. As such, it offers
protection against software attacks generated in the Rich Oper‑
ating System (Rich OS).

https://globalplatform.org/wp‑content/uploads/2018/05/Introduction‑
to‑Trusted‑Execution‑Environment‑15May2018.pdf

Confidential Computing
Idea: Process data on remote infrastructure without exposing it to the
provider or other parties involved.
https://confidentialcomputing.io/

https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://confidentialcomputing.io/


Getting Started With Hardware Design

Talks
Combat complexity ‑ build your own open OS and hardware;
Michael Engel, foss‑north 2021
https://conf.tube/w/p/b9a072ab‑1c4d‑4912‑905c‑
3f68096582ca?playlistPosition=14
The Genius of RISC‑V Microprocessors; Erik Engheim, ACCU 2022
https://www.youtube.com/watch?v=L9jvLsvkmdM
Linux on Open Source Hardware with Open Source chip design;
Drew Fustini, 36C3
https://www.youtube.com/watch?v=mnOBTD9dgsg

Literature
https://opencircuitsbook.com
Patterson and Hennessy ‑ Computer Organization and Design
RISC‑V Edition: The Hardware Software Interface

https://conf.tube/w/p/b9a072ab-1c4d-4912-905c-3f68096582ca?playlistPosition=14
https://conf.tube/w/p/b9a072ab-1c4d-4912-905c-3f68096582ca?playlistPosition=14
https://www.youtube.com/watch?v=L9jvLsvkmdM
https://www.youtube.com/watch?v=mnOBTD9dgsg
https://opencircuitsbook.com


Getting Started With Hardware Design
Talks

Combat complexity ‑ build your own open OS and hardware;
Michael Engel, foss‑north 2021
https://conf.tube/w/p/b9a072ab‑1c4d‑4912‑905c‑
3f68096582ca?playlistPosition=14
The Genius of RISC‑V Microprocessors; Erik Engheim, ACCU 2022
https://www.youtube.com/watch?v=L9jvLsvkmdM
Linux on Open Source Hardware with Open Source chip design;
Drew Fustini, 36C3
https://www.youtube.com/watch?v=mnOBTD9dgsg

Literature
https://opencircuitsbook.com
Patterson and Hennessy ‑ Computer Organization and Design
RISC‑V Edition: The Hardware Software Interface

https://conf.tube/w/p/b9a072ab-1c4d-4912-905c-3f68096582ca?playlistPosition=14
https://conf.tube/w/p/b9a072ab-1c4d-4912-905c-3f68096582ca?playlistPosition=14
https://www.youtube.com/watch?v=L9jvLsvkmdM
https://www.youtube.com/watch?v=mnOBTD9dgsg
https://opencircuitsbook.com


Getting Started With Hardware Design
Talks

Combat complexity ‑ build your own open OS and hardware;
Michael Engel, foss‑north 2021
https://conf.tube/w/p/b9a072ab‑1c4d‑4912‑905c‑
3f68096582ca?playlistPosition=14
The Genius of RISC‑V Microprocessors; Erik Engheim, ACCU 2022
https://www.youtube.com/watch?v=L9jvLsvkmdM
Linux on Open Source Hardware with Open Source chip design;
Drew Fustini, 36C3
https://www.youtube.com/watch?v=mnOBTD9dgsg

Literature
https://opencircuitsbook.com
Patterson and Hennessy ‑ Computer Organization and Design
RISC‑V Edition: The Hardware Software Interface

https://conf.tube/w/p/b9a072ab-1c4d-4912-905c-3f68096582ca?playlistPosition=14
https://conf.tube/w/p/b9a072ab-1c4d-4912-905c-3f68096582ca?playlistPosition=14
https://www.youtube.com/watch?v=L9jvLsvkmdM
https://www.youtube.com/watch?v=mnOBTD9dgsg
https://opencircuitsbook.com


Design Your Own Computer

FPGA Boards
OrangeCrab https://1bitsquared.de/products/orangecrab
ULX3S https://radiona.org/ulx3s/

Chip Design
LiteX (SoC framework) https://github.com/enjoy‑digital/litex
FuseSoC (packagemanager) http://fusesoc.net/
https://github.com/T‑head‑Semi/openc906 (e.g., in D1 and BL808)
Libre SoC https://libre‑soc.org/
FOSSi Foundation https://www.fossi‑foundation.org/
Zero to ASIC Course https://www.zerotoasiccourse.com/

Fabbing
https://developers.google.com/silicon

https://1bitsquared.de/products/orangecrab
https://radiona.org/ulx3s/
https://github.com/enjoy-digital/litex
http://fusesoc.net/
https://github.com/T-head-Semi/openc906
https://libre-soc.org/
https://www.fossi-foundation.org/
https://www.zerotoasiccourse.com/
https://developers.google.com/silicon


Design Your Own Computer

FPGA Boards
OrangeCrab https://1bitsquared.de/products/orangecrab
ULX3S https://radiona.org/ulx3s/

Chip Design
LiteX (SoC framework) https://github.com/enjoy‑digital/litex
FuseSoC (packagemanager) http://fusesoc.net/
https://github.com/T‑head‑Semi/openc906 (e.g., in D1 and BL808)
Libre SoC https://libre‑soc.org/
FOSSi Foundation https://www.fossi‑foundation.org/
Zero to ASIC Course https://www.zerotoasiccourse.com/

Fabbing
https://developers.google.com/silicon

https://1bitsquared.de/products/orangecrab
https://radiona.org/ulx3s/
https://github.com/enjoy-digital/litex
http://fusesoc.net/
https://github.com/T-head-Semi/openc906
https://libre-soc.org/
https://www.fossi-foundation.org/
https://www.zerotoasiccourse.com/
https://developers.google.com/silicon


Design Your Own Computer

FPGA Boards
OrangeCrab https://1bitsquared.de/products/orangecrab
ULX3S https://radiona.org/ulx3s/

Chip Design
LiteX (SoC framework) https://github.com/enjoy‑digital/litex
FuseSoC (packagemanager) http://fusesoc.net/
https://github.com/T‑head‑Semi/openc906 (e.g., in D1 and BL808)
Libre SoC https://libre‑soc.org/
FOSSi Foundation https://www.fossi‑foundation.org/
Zero to ASIC Course https://www.zerotoasiccourse.com/

Fabbing
https://developers.google.com/silicon

https://1bitsquared.de/products/orangecrab
https://radiona.org/ulx3s/
https://github.com/enjoy-digital/litex
http://fusesoc.net/
https://github.com/T-head-Semi/openc906
https://libre-soc.org/
https://www.fossi-foundation.org/
https://www.zerotoasiccourse.com/
https://developers.google.com/silicon


Design Your Own Computer

FPGA Boards
OrangeCrab https://1bitsquared.de/products/orangecrab
ULX3S https://radiona.org/ulx3s/

Chip Design
LiteX (SoC framework) https://github.com/enjoy‑digital/litex
FuseSoC (packagemanager) http://fusesoc.net/
https://github.com/T‑head‑Semi/openc906 (e.g., in D1 and BL808)
Libre SoC https://libre‑soc.org/
FOSSi Foundation https://www.fossi‑foundation.org/
Zero to ASIC Course https://www.zerotoasiccourse.com/

Fabbing
https://developers.google.com/silicon

https://1bitsquared.de/products/orangecrab
https://radiona.org/ulx3s/
https://github.com/enjoy-digital/litex
http://fusesoc.net/
https://github.com/T-head-Semi/openc906
https://libre-soc.org/
https://www.fossi-foundation.org/
https://www.zerotoasiccourse.com/
https://developers.google.com/silicon


Will Your Design be a Good Design?



Follow Me

Daniel Maslowski

https://github.com/orangecms
https://twitter.com/orangecms
https://twitch.tv/cyrevolt
https://youtube.com/@cyrevolt

https://github.com/platform‑system‑interface/psi‑spec

https://metaspora.org/platform‑system‑interface‑computing‑as‑
whole.pdf

https://github.com/orangecms
https://twitter.com/orangecms
https://twitch.tv/cyrevolt
https://youtube.com/@cyrevolt
https://github.com/platform-system-interface/psi-spec
https://metaspora.org/platform-system-interface-computing-as-whole.pdf
https://metaspora.org/platform-system-interface-computing-as-whole.pdf

	Designing a Computer
	Discovering a Computer
	Platforms and Systems
	Layers and Interfaces
	Research & Development
	Will Your Design be a Good Design?

