
oreboot 2022 status report
on to RISC‑V

Daniel Maslowski



Hey Again OSFC!



Remember oreboot?

oreboot is a fork of coreboot…

From aa246f71de7f9900a30d938ab618c46839436616 [...]
From: "Ronald G. Minnich" <rminnich@gmail.com>
Date: Mon, 1 Apr 2019 23:48:56 +0000
Subject: [PATCH] Initial removal of C code



Remember oreboot?

oreboot is a fork of coreboot…

From aa246f71de7f9900a30d938ab618c46839436616 [...]
From: "Ronald G. Minnich" <rminnich@gmail.com>
Date: Mon, 1 Apr 2019 23:48:56 +0000
Subject: [PATCH] Initial removal of C code



Remember oreboot?

oreboot is a fork of coreboot…

From aa246f71de7f9900a30d938ab618c46839436616 [...]
From: "Ronald G. Minnich" <rminnich@gmail.com>
Date: Mon, 1 Apr 2019 23:48:56 +0000
Subject: [PATCH] Initial removal of C code



oreboot is firmware in Rust!

oreboot is a fork of coreboot, with C removed, written in Rust.

https://github.com/oreboot

https://github.com/oreboot


State of Development in 2022 / Q4

reworked to Cargo Workspace, thanks to洛佳 (Luo Ĵia)
▶ got rid of a lot of boilerplate
▶ build speed increased with shared cache
▶ can still be built from top level or board dir running make

removed FSP bits and everything but Allwinner D1 (sunxi/nezha)
▶ references kept in a graveyard.md for revival

main focus is on RISC‑V now
build setup based on xtask
driver model discarded in favor of Rust embedded-hal

Website and documentation are being worked on.



State of Development in 2022 / Q4

reworked to Cargo Workspace, thanks to洛佳 (Luo Ĵia)
▶ got rid of a lot of boilerplate
▶ build speed increased with shared cache
▶ can still be built from top level or board dir running make

removed FSP bits and everything but Allwinner D1 (sunxi/nezha)
▶ references kept in a graveyard.md for revival

main focus is on RISC‑V now
build setup based on xtask
driver model discarded in favor of Rust embedded-hal

Website and documentation are being worked on.



State of Development in 2022 / Q4

reworked to Cargo Workspace, thanks to洛佳 (Luo Ĵia)
▶ got rid of a lot of boilerplate
▶ build speed increased with shared cache
▶ can still be built from top level or board dir running make

removed FSP bits and everything but Allwinner D1 (sunxi/nezha)
▶ references kept in a graveyard.md for revival

main focus is on RISC‑V now
build setup based on xtask
driver model discarded in favor of Rust embedded-hal

Website and documentation are being worked on.



State of Development in 2022 / Q4

reworked to Cargo Workspace, thanks to洛佳 (Luo Ĵia)
▶ got rid of a lot of boilerplate
▶ build speed increased with shared cache
▶ can still be built from top level or board dir running make

removed FSP bits and everything but Allwinner D1 (sunxi/nezha)
▶ references kept in a graveyard.md for revival

main focus is on RISC‑V now
build setup based on xtask
driver model discarded in favor of Rust embedded-hal

Website and documentation are being worked on.



State of Development in 2022 / Q4

reworked to Cargo Workspace, thanks to洛佳 (Luo Ĵia)
▶ got rid of a lot of boilerplate
▶ build speed increased with shared cache
▶ can still be built from top level or board dir running make

removed FSP bits and everything but Allwinner D1 (sunxi/nezha)
▶ references kept in a graveyard.md for revival

main focus is on RISC‑V now
build setup based on xtask
driver model discarded in favor of Rust embedded-hal

Website and documentation are being worked on.



Cleaning up

$ git diff --stat 9b1614cc..ee205123 | tail -n1
23 files changed, 2 insertions(+), 13005 deletions(-)

$ git show --stat c0061370 | tail -n1
139 files changed, 1 insertion(+), 37399 deletions(-)

$ git diff --stat 85f8dc9b..04d750f2 | tail -n1
69 files changed, 5 insertions(+), 7062 deletions(-)

Removals are documented in graveyard.md.



Cleaning up

$ git diff --stat 9b1614cc..ee205123 | tail -n1
23 files changed, 2 insertions(+), 13005 deletions(-)

$ git show --stat c0061370 | tail -n1
139 files changed, 1 insertion(+), 37399 deletions(-)

$ git diff --stat 85f8dc9b..04d750f2 | tail -n1
69 files changed, 5 insertions(+), 7062 deletions(-)

Removals are documented in graveyard.md.



Cleaning up

$ git diff --stat 9b1614cc..ee205123 | tail -n1
23 files changed, 2 insertions(+), 13005 deletions(-)

$ git show --stat c0061370 | tail -n1
139 files changed, 1 insertion(+), 37399 deletions(-)

$ git diff --stat 85f8dc9b..04d750f2 | tail -n1
69 files changed, 5 insertions(+), 7062 deletions(-)

Removals are documented in graveyard.md.



Cleaning up

$ git diff --stat 9b1614cc..ee205123 | tail -n1
23 files changed, 2 insertions(+), 13005 deletions(-)

$ git show --stat c0061370 | tail -n1
139 files changed, 1 insertion(+), 37399 deletions(-)

$ git diff --stat 85f8dc9b..04d750f2 | tail -n1
69 files changed, 5 insertions(+), 7062 deletions(-)

Removals are documented in graveyard.md.



Cleaning up

$ git diff --stat 9b1614cc..ee205123 | tail -n1
23 files changed, 2 insertions(+), 13005 deletions(-)

$ git show --stat c0061370 | tail -n1
139 files changed, 1 insertion(+), 37399 deletions(-)

$ git diff --stat 85f8dc9b..04d750f2 | tail -n1
69 files changed, 5 insertions(+), 7062 deletions(-)

Removals are documented in graveyard.md.



Firmware Matryoshka

Stages
XIP/SRAM

▶ early initialization
▶ PLLs, clocks, GPIOs
▶ UART, say hello
▶ SPI flash MMIO
▶ DRAM controller

DRAM
▶ what didn’t fit in

SRAM
▶ extract payload
▶ set up handlers
▶ run payload (done)



Firmware Matryoshka

Stages
XIP/SRAM

▶ early initialization
▶ PLLs, clocks, GPIOs
▶ UART, say hello
▶ SPI flash MMIO
▶ DRAM controller

DRAM
▶ what didn’t fit in

SRAM
▶ extract payload
▶ set up handlers
▶ run payload (done)



Firmware Runtime Services



Benefits

… for attackers ‑ whoops! Closed source means we can hardly
fix issues on our own, while OEMs are slow to push out updates.



Benefits

… for attackers ‑ whoops! Closed source means we can hardly
fix issues on our own, while OEMs are slow to push out updates.



Benefits

… for attackers ‑ whoops! Closed source means we can hardly
fix issues on our own, while OEMs are slow to push out updates.



RISC‑V Runtime Services: SBI

RISC‑V Runtime Services are listed in the platform spec, referencing the
SBI spec.

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Arguments and extension/function are passed through A (argument)
registers.

Then the call is performed via the ECALL instruction.

Example, writing a B character to the serial console:

li a0, 'B' # argument
li a7, 0x01 # extension "console putchar"
ecall

Ports need to be written per platform (core/SoC/board).

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc


RISC‑V Runtime Services: SBI
RISC‑V Runtime Services are listed in the platform spec, referencing the
SBI spec.

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Arguments and extension/function are passed through A (argument)
registers.

Then the call is performed via the ECALL instruction.

Example, writing a B character to the serial console:

li a0, 'B' # argument
li a7, 0x01 # extension "console putchar"
ecall

Ports need to be written per platform (core/SoC/board).

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc


RISC‑V Runtime Services: SBI
RISC‑V Runtime Services are listed in the platform spec, referencing the
SBI spec.

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Arguments and extension/function are passed through A (argument)
registers.

Then the call is performed via the ECALL instruction.

Example, writing a B character to the serial console:

li a0, 'B' # argument
li a7, 0x01 # extension "console putchar"
ecall

Ports need to be written per platform (core/SoC/board).

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc


RISC‑V Runtime Services: SBI
RISC‑V Runtime Services are listed in the platform spec, referencing the
SBI spec.

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Arguments and extension/function are passed through A (argument)
registers.

Then the call is performed via the ECALL instruction.

Example, writing a B character to the serial console:

li a0, 'B' # argument
li a7, 0x01 # extension "console putchar"
ecall

Ports need to be written per platform (core/SoC/board).

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc


RISC‑V Runtime Services: SBI
RISC‑V Runtime Services are listed in the platform spec, referencing the
SBI spec.

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Arguments and extension/function are passed through A (argument)
registers.

Then the call is performed via the ECALL instruction.

Example, writing a B character to the serial console:

li a0, 'B' # argument
li a7, 0x01 # extension "console putchar"
ecall

Ports need to be written per platform (core/SoC/board).

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc


RISC‑V Runtime Services: SBI
RISC‑V Runtime Services are listed in the platform spec, referencing the
SBI spec.

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Arguments and extension/function are passed through A (argument)
registers.

Then the call is performed via the ECALL instruction.

Example, writing a B character to the serial console:

li a0, 'B' # argument
li a7, 0x01 # extension "console putchar"
ecall

Ports need to be written per platform (core/SoC/board).

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc


RISC‑V Runtime Services: SBI
RISC‑V Runtime Services are listed in the platform spec, referencing the
SBI spec.

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Arguments and extension/function are passed through A (argument)
registers.

Then the call is performed via the ECALL instruction.

Example, writing a B character to the serial console:

li a0, 'B' # argument
li a7, 0x01 # extension "console putchar"
ecall

Ports need to be written per platform (core/SoC/board).

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc


RISC‑V Runtime Services: SBI
RISC‑V Runtime Services are listed in the platform spec, referencing the
SBI spec.

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Arguments and extension/function are passed through A (argument)
registers.

Then the call is performed via the ECALL instruction.

Example, writing a B character to the serial console:

li a0, 'B' # argument
li a7, 0x01 # extension "console putchar"
ecall

Ports need to be written per platform (core/SoC/board).

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc


OpenSBI

An SBI written in C: https://github.com/riscv‑software‑src/opensbi

https://github.com/riscv-software-src/opensbi


OpenSBI
An SBI written in C: https://github.com/riscv‑software‑src/opensbi

https://github.com/riscv-software-src/opensbi


OpenSBI
An SBI written in C: https://github.com/riscv‑software‑src/opensbi

https://github.com/riscv-software-src/opensbi


RustSBI

library for implementing a specific platform SBI
solves the abstraction issue based on Rust embedded-hal

This library adapts to embedded Rust’s embedded-hal crate to
provide basic SBI features. When building for own platform, im‑
plement traits in this libraryandpass themto the functionsbegin
with init.

When handlers are set up, call enter_privileged to enter the OS in
S‑Mode.

https://docs.rs/rustsbi/latest/rustsbi/

https://docs.rs/embedded-hal/latest/embedded_hal/
https://docs.rs/rustsbi/latest/rustsbi/


RustSBI

library for implementing a specific platform SBI
solves the abstraction issue based on Rust embedded-hal

This library adapts to embedded Rust’s embedded-hal crate to
provide basic SBI features. When building for own platform, im‑
plement traits in this libraryandpass themto the functionsbegin
with init.

When handlers are set up, call enter_privileged to enter the OS in
S‑Mode.

https://docs.rs/rustsbi/latest/rustsbi/

https://docs.rs/embedded-hal/latest/embedded_hal/
https://docs.rs/rustsbi/latest/rustsbi/


RustSBI

library for implementing a specific platform SBI
solves the abstraction issue based on Rust embedded-hal

This library adapts to embedded Rust’s embedded-hal crate to
provide basic SBI features. When building for own platform, im‑
plement traits in this libraryandpass themto the functionsbegin
with init.

When handlers are set up, call enter_privileged to enter the OS in
S‑Mode.

https://docs.rs/rustsbi/latest/rustsbi/

https://docs.rs/embedded-hal/latest/embedded_hal/
https://docs.rs/rustsbi/latest/rustsbi/


RustSBI

library for implementing a specific platform SBI
solves the abstraction issue based on Rust embedded-hal

This library adapts to embedded Rust’s embedded-hal crate to
provide basic SBI features. When building for own platform, im‑
plement traits in this libraryandpass themto the functionsbegin
with init.

When handlers are set up, call enter_privileged to enter the OS in
S‑Mode.

https://docs.rs/rustsbi/latest/rustsbi/

https://docs.rs/embedded-hal/latest/embedded_hal/
https://docs.rs/rustsbi/latest/rustsbi/


RustSBI

library for implementing a specific platform SBI
solves the abstraction issue based on Rust embedded-hal

This library adapts to embedded Rust’s embedded-hal crate to
provide basic SBI features. When building for own platform, im‑
plement traits in this libraryandpass themto the functionsbegin
with init.

When handlers are set up, call enter_privileged to enter the OS in
S‑Mode.

https://docs.rs/rustsbi/latest/rustsbi/

https://docs.rs/embedded-hal/latest/embedded_hal/
https://docs.rs/rustsbi/latest/rustsbi/


Porting sunxi/nezha



Allwinner Nezha Board

https://linux‑sunxi.org/Allwinner_Nezha

https://linux-sunxi.org/Allwinner_Nezha


Allwinner D1

Themask ROM loads a blob from SPI NOR/NAND, eMMC or SD card into
SRAM (32K). It has to start with a specific header.

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/
It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage
First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

Status
We can boot Linux. \o/
And xv6, MnemOS, r9 ‑ with evenmore to come.

https://github.com/luojia65/test-d1-flash-bare/


Allwinner D1
Themask ROM loads a blob from SPI NOR/NAND, eMMC or SD card into
SRAM (32K). It has to start with a specific header.

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/
It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage
First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

Status
We can boot Linux. \o/
And xv6, MnemOS, r9 ‑ with evenmore to come.

https://github.com/luojia65/test-d1-flash-bare/


Allwinner D1
Themask ROM loads a blob from SPI NOR/NAND, eMMC or SD card into
SRAM (32K). It has to start with a specific header.

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/

It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage
First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

Status
We can boot Linux. \o/
And xv6, MnemOS, r9 ‑ with evenmore to come.

https://github.com/luojia65/test-d1-flash-bare/


Allwinner D1
Themask ROM loads a blob from SPI NOR/NAND, eMMC or SD card into
SRAM (32K). It has to start with a specific header.

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/
It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage
First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

Status
We can boot Linux. \o/
And xv6, MnemOS, r9 ‑ with evenmore to come.

https://github.com/luojia65/test-d1-flash-bare/


Allwinner D1
Themask ROM loads a blob from SPI NOR/NAND, eMMC or SD card into
SRAM (32K). It has to start with a specific header.

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/
It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage

First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

Status
We can boot Linux. \o/
And xv6, MnemOS, r9 ‑ with evenmore to come.

https://github.com/luojia65/test-d1-flash-bare/


Allwinner D1
Themask ROM loads a blob from SPI NOR/NAND, eMMC or SD card into
SRAM (32K). It has to start with a specific header.

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/
It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage
First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

Status
We can boot Linux. \o/
And xv6, MnemOS, r9 ‑ with evenmore to come.

https://github.com/luojia65/test-d1-flash-bare/


Allwinner D1
Themask ROM loads a blob from SPI NOR/NAND, eMMC or SD card into
SRAM (32K). It has to start with a specific header.

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/
It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage
First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

Status
We can boot Linux. \o/

And xv6, MnemOS, r9 ‑ with evenmore to come.

https://github.com/luojia65/test-d1-flash-bare/


Allwinner D1
Themask ROM loads a blob from SPI NOR/NAND, eMMC or SD card into
SRAM (32K). It has to start with a specific header.

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/
It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage
First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

Status
We can boot Linux. \o/
And xv6, MnemOS, r9 ‑ with evenmore to come.

https://github.com/luojia65/test-d1-flash-bare/


RustSBI in oreboot: example

pub fn sbi_exec(payload_offset: usize, dtb_offset: usize) -> ! {
let hartid = riscv::register::mhartid::read();
init_pmp();
init_csrs();
runtime::init();
if hartid == 0 {

init_plic();
peripheral::init_peripheral();

}
delegate_interrupt_exception();
// NOTE: This sets up handlers for SBI calls and traps
execute_supervisor(payload_offset, hartid, dtb_offset)

}



Credits

We are very grateful for RustSBI. It makes our life a lot easier. :)
Mr Yang Derui, Vivian Wang and Luo Jia helped us out to get going.

Paul Ruizendaal translated the DRAM init from an assembly dump to C,
which we in turn based our Rust implementation on. Mimoja wrote and
ran a full DRAM test ranging over the entire address space.

Samuel Holland took the effort to pick up Allwinner’s BSP, work out
changes for mainline, and upstream patches to U‑Boot, OpenSBI and
Linux, joined our Nezha online community meetup, and continuously
helped us out when we had questions or ran into issues.

Michael Engel ported xv6 to the D1, which made a nice and small test
payload.

The D1 Mainline Telegram group with all its members had always
been supportive.
Special shoutout to Pierce who kept believing in our success!



Credits
We are very grateful for RustSBI. It makes our life a lot easier. :)
Mr Yang Derui, Vivian Wang and Luo Jia helped us out to get going.

Paul Ruizendaal translated the DRAM init from an assembly dump to C,
which we in turn based our Rust implementation on. Mimoja wrote and
ran a full DRAM test ranging over the entire address space.

Samuel Holland took the effort to pick up Allwinner’s BSP, work out
changes for mainline, and upstream patches to U‑Boot, OpenSBI and
Linux, joined our Nezha online community meetup, and continuously
helped us out when we had questions or ran into issues.

Michael Engel ported xv6 to the D1, which made a nice and small test
payload.

The D1 Mainline Telegram group with all its members had always
been supportive.
Special shoutout to Pierce who kept believing in our success!



Credits
We are very grateful for RustSBI. It makes our life a lot easier. :)
Mr Yang Derui, Vivian Wang and Luo Jia helped us out to get going.

Paul Ruizendaal translated the DRAM init from an assembly dump to C,
which we in turn based our Rust implementation on. Mimoja wrote and
ran a full DRAM test ranging over the entire address space.

Samuel Holland took the effort to pick up Allwinner’s BSP, work out
changes for mainline, and upstream patches to U‑Boot, OpenSBI and
Linux, joined our Nezha online community meetup, and continuously
helped us out when we had questions or ran into issues.

Michael Engel ported xv6 to the D1, which made a nice and small test
payload.

The D1 Mainline Telegram group with all its members had always
been supportive.
Special shoutout to Pierce who kept believing in our success!



Credits
We are very grateful for RustSBI. It makes our life a lot easier. :)
Mr Yang Derui, Vivian Wang and Luo Jia helped us out to get going.

Paul Ruizendaal translated the DRAM init from an assembly dump to C,
which we in turn based our Rust implementation on. Mimoja wrote and
ran a full DRAM test ranging over the entire address space.

Samuel Holland took the effort to pick up Allwinner’s BSP, work out
changes for mainline, and upstream patches to U‑Boot, OpenSBI and
Linux, joined our Nezha online community meetup, and continuously
helped us out when we had questions or ran into issues.

Michael Engel ported xv6 to the D1, which made a nice and small test
payload.

The D1 Mainline Telegram group with all its members had always
been supportive.
Special shoutout to Pierce who kept believing in our success!



Credits
We are very grateful for RustSBI. It makes our life a lot easier. :)
Mr Yang Derui, Vivian Wang and Luo Jia helped us out to get going.

Paul Ruizendaal translated the DRAM init from an assembly dump to C,
which we in turn based our Rust implementation on. Mimoja wrote and
ran a full DRAM test ranging over the entire address space.

Samuel Holland took the effort to pick up Allwinner’s BSP, work out
changes for mainline, and upstream patches to U‑Boot, OpenSBI and
Linux, joined our Nezha online community meetup, and continuously
helped us out when we had questions or ran into issues.

Michael Engel ported xv6 to the D1, which made a nice and small test
payload.

The D1 Mainline Telegram group with all its members had always
been supportive.
Special shoutout to Pierce who kept believing in our success!



Credits
We are very grateful for RustSBI. It makes our life a lot easier. :)
Mr Yang Derui, Vivian Wang and Luo Jia helped us out to get going.

Paul Ruizendaal translated the DRAM init from an assembly dump to C,
which we in turn based our Rust implementation on. Mimoja wrote and
ran a full DRAM test ranging over the entire address space.

Samuel Holland took the effort to pick up Allwinner’s BSP, work out
changes for mainline, and upstream patches to U‑Boot, OpenSBI and
Linux, joined our Nezha online community meetup, and continuously
helped us out when we had questions or ran into issues.

Michael Engel ported xv6 to the D1, which made a nice and small test
payload.

The D1 Mainline Telegram group with all its members had always
been supportive.
Special shoutout to Pierce who kept believing in our success!



Things We Messed Up: Off‑by‑one at scale

let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8 % 256, o as u8 % 256]);

Rust analyzer says something about 256 being toomuch for u8.
let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8 % 255, o as u8 % 255]);

Kernel won’t come up. Some long hours at OSF hackathon reveal:

We are off by ff00.
let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8, o as u8]);

After another hour of looking again, wemanaged to figure it out and
learned that Rust already drops the higher bits for foo as u8.



Things We Messed Up: Off‑by‑one at scale

let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8 % 256, o as u8 % 256]);

Rust analyzer says something about 256 being toomuch for u8.
let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8 % 255, o as u8 % 255]);

Kernel won’t come up. Some long hours at OSF hackathon reveal:

We are off by ff00.
let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8, o as u8]);

After another hour of looking again, wemanaged to figure it out and
learned that Rust already drops the higher bits for foo as u8.



Things We Messed Up: Off‑by‑one at scale

let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8 % 256, o as u8 % 256]);

Rust analyzer says something about 256 being toomuch for u8.

let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8 % 255, o as u8 % 255]);

Kernel won’t come up. Some long hours at OSF hackathon reveal:

We are off by ff00.
let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8, o as u8]);

After another hour of looking again, wemanaged to figure it out and
learned that Rust already drops the higher bits for foo as u8.



Things We Messed Up: Off‑by‑one at scale

let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8 % 256, o as u8 % 256]);

Rust analyzer says something about 256 being toomuch for u8.
let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8 % 255, o as u8 % 255]);

Kernel won’t come up. Some long hours at OSF hackathon reveal:

We are off by ff00.
let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8, o as u8]);

After another hour of looking again, wemanaged to figure it out and
learned that Rust already drops the higher bits for foo as u8.



Things We Messed Up: Off‑by‑one at scale

let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8 % 256, o as u8 % 256]);

Rust analyzer says something about 256 being toomuch for u8.
let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8 % 255, o as u8 % 255]);

Kernel won’t come up. Some long hours at OSF hackathon reveal:

We are off by ff00.

let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8, o as u8]);

After another hour of looking again, wemanaged to figure it out and
learned that Rust already drops the higher bits for foo as u8.



Things We Messed Up: Off‑by‑one at scale

let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8 % 256, o as u8 % 256]);

Rust analyzer says something about 256 being toomuch for u8.
let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8 % 255, o as u8 % 255]);

Kernel won’t come up. Some long hours at OSF hackathon reveal:

We are off by ff00.
let b = f.copy_into([(o >> 16) as u8, (o >> 8) as u8, o as u8]);

After another hour of looking again, wemanaged to figure it out and
learned that Rust already drops the higher bits for foo as u8.



Things We Messed Up: Cache coherence

Unable to handle kernel paging request at virtual address fffffff92f74c2ba
Oops [#1]
Modules linked in:
CPU: 0 PID: 103 Comm: kworker/0:0 Not tainted 5.19.0-rc1-14138-g4e54689319a7-dir6
Hardware name: Sipeed Lichee RV Dock (DT)
epc : wq_worker_running+0xa/0x56
ra : wq_worker_running+0xa/0x56

epc : ffffffff80018b68 ra : ffffffff80018b68 sp : ffffffc804113e40

Well, that wasn’t us, but it took a long time to find it.

https://github.com/rust‑embedded/riscv/pull/107
Fix reading marchid and mimpid
It seems tohavebeena copy‑paste error. We ran intoa very nasty
bug in oreboot on the Allwinner D1 (C906) where an errata patch
in Linux relies on those two being zero.

https://github.com/rust-embedded/riscv/pull/107


Things We Messed Up: Cache coherence

Unable to handle kernel paging request at virtual address fffffff92f74c2ba
Oops [#1]
Modules linked in:
CPU: 0 PID: 103 Comm: kworker/0:0 Not tainted 5.19.0-rc1-14138-g4e54689319a7-dir6
Hardware name: Sipeed Lichee RV Dock (DT)
epc : wq_worker_running+0xa/0x56
ra : wq_worker_running+0xa/0x56

epc : ffffffff80018b68 ra : ffffffff80018b68 sp : ffffffc804113e40

Well, that wasn’t us, but it took a long time to find it.

https://github.com/rust‑embedded/riscv/pull/107
Fix reading marchid and mimpid
It seems tohavebeena copy‑paste error. We ran intoa very nasty
bug in oreboot on the Allwinner D1 (C906) where an errata patch
in Linux relies on those two being zero.

https://github.com/rust-embedded/riscv/pull/107


Things We Messed Up: Cache coherence

Unable to handle kernel paging request at virtual address fffffff92f74c2ba
Oops [#1]
Modules linked in:
CPU: 0 PID: 103 Comm: kworker/0:0 Not tainted 5.19.0-rc1-14138-g4e54689319a7-dir6
Hardware name: Sipeed Lichee RV Dock (DT)
epc : wq_worker_running+0xa/0x56
ra : wq_worker_running+0xa/0x56

epc : ffffffff80018b68 ra : ffffffff80018b68 sp : ffffffc804113e40

Well, that wasn’t us, but it took a long time to find it.

https://github.com/rust‑embedded/riscv/pull/107
Fix reading marchid and mimpid
It seems tohavebeena copy‑paste error. We ran intoa very nasty
bug in oreboot on the Allwinner D1 (C906) where an errata patch
in Linux relies on those two being zero.

https://github.com/rust-embedded/riscv/pull/107


Things We Messed Up: Cache coherence

Unable to handle kernel paging request at virtual address fffffff92f74c2ba
Oops [#1]
Modules linked in:
CPU: 0 PID: 103 Comm: kworker/0:0 Not tainted 5.19.0-rc1-14138-g4e54689319a7-dir6
Hardware name: Sipeed Lichee RV Dock (DT)
epc : wq_worker_running+0xa/0x56
ra : wq_worker_running+0xa/0x56

epc : ffffffff80018b68 ra : ffffffff80018b68 sp : ffffffc804113e40

Well, that wasn’t us, but it took a long time to find it.

https://github.com/rust‑embedded/riscv/pull/107
Fix reading marchid and mimpid
It seems tohavebeena copy‑paste error. We ran intoa very nasty
bug in oreboot on the Allwinner D1 (C906) where an errata patch
in Linux relies on those two being zero.

https://github.com/rust-embedded/riscv/pull/107


Awesome Demo



Thank you!


	Hey Again OSFC!
	Firmware Runtime Services
	Porting sunxi/nezha
	Awesome Demo
	Thank you!

