
oreboot on RISC‑V
Comparing Implementations on Two Platforms
Daniel Maslowski

Agenda

Introduction
Allwinner D1
StarFive JH7100
Approaches and Future Work

What is oreboot again?

oreboot is a fork of coreboot…

From aa246f71de7f9900a30d938ab618c46839436616 [...]
From: "Ronald G. Minnich" <rminnich@gmail.com>
Date: Mon, 1 Apr 2019 23:48:56 +0000
Subject: [PATCH] Initial removal of C code

https://github.com/oreboot/oreboot

https://github.com/oreboot/oreboot

What is oreboot again?
oreboot is a fork of coreboot…

From aa246f71de7f9900a30d938ab618c46839436616 [...]
From: "Ronald G. Minnich" <rminnich@gmail.com>
Date: Mon, 1 Apr 2019 23:48:56 +0000
Subject: [PATCH] Initial removal of C code

https://github.com/oreboot/oreboot

https://github.com/oreboot/oreboot

What is oreboot again?
oreboot is a fork of coreboot…

From aa246f71de7f9900a30d938ab618c46839436616 [...]
From: "Ronald G. Minnich" <rminnich@gmail.com>
Date: Mon, 1 Apr 2019 23:48:56 +0000
Subject: [PATCH] Initial removal of C code

https://github.com/oreboot/oreboot

https://github.com/oreboot/oreboot

Firmware in Rust
oreboot is a fork of coreboot, with C removed, written in Rust.

Rust logo under CC BY 4.0, https://github.com/rust‑lang/rust‑artwork

Ferris the crab from https://rustacean.net/

https://github.com/rust-lang/rust-artwork
https://rustacean.net/

Firmware Development

feels like an RPG
You need to figure out how things work.

point onmap = program counter (PC)
Sometimes you have no clue where you are.

world map =memory map
The islands or worlds are the peripherals.

player’s guide = processor/SoCmanual
It may be incomplete or not at all available (at least to you).

Internet of Things = MMORPG
Yes, it can get very dangerous.

Firmware Development

feels like an RPG
You need to figure out how things work.

point onmap = program counter (PC)
Sometimes you have no clue where you are.

world map =memory map
The islands or worlds are the peripherals.

player’s guide = processor/SoCmanual
It may be incomplete or not at all available (at least to you).

Internet of Things = MMORPG
Yes, it can get very dangerous.

Firmware Development

feels like an RPG
You need to figure out how things work.

point onmap = program counter (PC)
Sometimes you have no clue where you are.

world map =memory map
The islands or worlds are the peripherals.

player’s guide = processor/SoCmanual
It may be incomplete or not at all available (at least to you).

Internet of Things = MMORPG
Yes, it can get very dangerous.

Firmware Development

feels like an RPG
You need to figure out how things work.

point onmap = program counter (PC)
Sometimes you have no clue where you are.

world map =memory map
The islands or worlds are the peripherals.

player’s guide = processor/SoCmanual
It may be incomplete or not at all available (at least to you).

Internet of Things = MMORPG
Yes, it can get very dangerous.

Firmware Development

feels like an RPG
You need to figure out how things work.

point onmap = program counter (PC)
Sometimes you have no clue where you are.

world map =memory map
The islands or worlds are the peripherals.

player’s guide = processor/SoCmanual
It may be incomplete or not at all available (at least to you).

Internet of Things = MMORPG
Yes, it can get very dangerous.

Firmware Development

feels like an RPG
You need to figure out how things work.

point onmap = program counter (PC)
Sometimes you have no clue where you are.

world map =memory map
The islands or worlds are the peripherals.

player’s guide = processor/SoCmanual
It may be incomplete or not at all available (at least to you).

Internet of Things = MMORPG
Yes, it can get very dangerous.

Single Board Computers

Many aremarketed as open source. Are they though?

Documentation
schematics and board design
manuals and instructions
open license

Source Code
open tools for flashing, debugging and image composition
firmware, from the start, documented (U‑Boot, oreboot, …)
Linux or other OS,mainline friendly (git fork, not source dump)
all code usable with upstream toolchains, or provide toolchains in a
reproducible form (not only binaries for a specific architecture/OS)

OSHWA Certification: https://certification.oshwa.org/

https://certification.oshwa.org/

Single Board Computers
Many aremarketed as open source. Are they though?

Documentation
schematics and board design
manuals and instructions
open license

Source Code
open tools for flashing, debugging and image composition
firmware, from the start, documented (U‑Boot, oreboot, …)
Linux or other OS,mainline friendly (git fork, not source dump)
all code usable with upstream toolchains, or provide toolchains in a
reproducible form (not only binaries for a specific architecture/OS)

OSHWA Certification: https://certification.oshwa.org/

https://certification.oshwa.org/

Single Board Computers
Many aremarketed as open source. Are they though?

Documentation
schematics and board design
manuals and instructions
open license

Source Code
open tools for flashing, debugging and image composition
firmware, from the start, documented (U‑Boot, oreboot, …)
Linux or other OS,mainline friendly (git fork, not source dump)
all code usable with upstream toolchains, or provide toolchains in a
reproducible form (not only binaries for a specific architecture/OS)

OSHWA Certification: https://certification.oshwa.org/

https://certification.oshwa.org/

Single Board Computers
Many aremarketed as open source. Are they though?

Documentation
schematics and board design
manuals and instructions
open license

Source Code
open tools for flashing, debugging and image composition
firmware, from the start, documented (U‑Boot, oreboot, …)
Linux or other OS,mainline friendly (git fork, not source dump)
all code usable with upstream toolchains, or provide toolchains in a
reproducible form (not only binaries for a specific architecture/OS)

OSHWA Certification: https://certification.oshwa.org/

https://certification.oshwa.org/

Single Board Computers
Many aremarketed as open source. Are they though?

Documentation
schematics and board design
manuals and instructions
open license

Source Code
open tools for flashing, debugging and image composition
firmware, from the start, documented (U‑Boot, oreboot, …)
Linux or other OS,mainline friendly (git fork, not source dump)
all code usable with upstream toolchains, or provide toolchains in a
reproducible form (not only binaries for a specific architecture/OS)

OSHWA Certification: https://certification.oshwa.org/

https://certification.oshwa.org/

Let’s look at a manual and amemory map!

Allwinner D1

D1 SoC

Production
widely produced and easily available
many different boards from various vendors

Cores
1x C906 core, 1GHz

▶ https://github.com/T‑head‑Semi/openc906
1x low‑power core, Xtensa HiFi4

Documentation
larger manual provided

▶ about 1400 pages
DRAM controller and HDMI missing

https://github.com/T-head-Semi/openc906

D1 SoC

Production
widely produced and easily available
many different boards from various vendors

Cores
1x C906 core, 1GHz

▶ https://github.com/T‑head‑Semi/openc906
1x low‑power core, Xtensa HiFi4

Documentation
larger manual provided

▶ about 1400 pages
DRAM controller and HDMI missing

https://github.com/T-head-Semi/openc906

D1 SoC

Production
widely produced and easily available
many different boards from various vendors

Cores
1x C906 core, 1GHz

▶ https://github.com/T‑head‑Semi/openc906
1x low‑power core, Xtensa HiFi4

Documentation
larger manual provided

▶ about 1400 pages
DRAM controller and HDMI missing

https://github.com/T-head-Semi/openc906

D1 SoC

Production
widely produced and easily available
many different boards from various vendors

Cores
1x C906 core, 1GHz

▶ https://github.com/T‑head‑Semi/openc906
1x low‑power core, Xtensa HiFi4

Documentation
larger manual provided

▶ about 1400 pages
DRAM controller and HDMI missing

https://github.com/T-head-Semi/openc906

D1 Boards and SoMs

Allwinner Nezha
first board; Raspberry Pi form factor

DongshanPi Nezha STU
SoM in custom form factor
carrier board with many pins

Sipeed Lichee RV
SoM andmultiple carrier boards

ClockworkPi R01
SoM in RPi CM 3 form factor
DevTerm carrier board + case

MangoPi MQ‑Pro
Raspberry Pi Zero form factor, drop‑in replacement

https://linux‑sunxi.org/Category:D1_Boards

https://linux-sunxi.org/Category:D1_Boards

D1 Boards: Lichee RV + Dock

The regular Dock has solder joints for a SPI flash, so I added one.

The Dock Pro already has a 16 MiB SPI flash, plus a USB serial converter.

D1 Boards: Lichee RV + Dock

The regular Dock has solder joints for a SPI flash, so I added one.

The Dock Pro already has a 16 MiB SPI flash, plus a USB serial converter.

D1 Boards: Lichee RV + Dock

The regular Dock has solder joints for a SPI flash, so I added one.

The Dock Pro already has a 16 MiB SPI flash, plus a USB serial converter.

D1 Boot Behavior
Mask ROM

It loads a blob from SPI flash, eMMC or SD card into SRAM (32K).
The blob has to start with a specific eGON header:
Disassembly of section .head:

0000000000020000 <head_jump>:
20000: a5 a0 j 0x20068 <start+0x8>
20002: 00 00 unimp

0000000000020004 <_ZN17oreboot_nezha_bt09EGON_HEAD17h5aa4b41b712905f2E>:
20004: 65 47 4f 4e 2e 42 54 30 eGON.BT0
2000c: 39 6c 0a 5f 00 00 00 00 9l._....

Note: The header is not documented in the manual.

SPI flash
We need to actively read from SPI flash and have no MMIO access to it.

D1 Boot Behavior
Mask ROM
It loads a blob from SPI flash, eMMC or SD card into SRAM (32K).

The blob has to start with a specific eGON header:
Disassembly of section .head:

0000000000020000 <head_jump>:
20000: a5 a0 j 0x20068 <start+0x8>
20002: 00 00 unimp

0000000000020004 <_ZN17oreboot_nezha_bt09EGON_HEAD17h5aa4b41b712905f2E>:
20004: 65 47 4f 4e 2e 42 54 30 eGON.BT0
2000c: 39 6c 0a 5f 00 00 00 00 9l._....

Note: The header is not documented in the manual.

SPI flash
We need to actively read from SPI flash and have no MMIO access to it.

D1 Boot Behavior
Mask ROM
It loads a blob from SPI flash, eMMC or SD card into SRAM (32K).
The blob has to start with a specific eGON header:

Disassembly of section .head:

0000000000020000 <head_jump>:
20000: a5 a0 j 0x20068 <start+0x8>
20002: 00 00 unimp

0000000000020004 <_ZN17oreboot_nezha_bt09EGON_HEAD17h5aa4b41b712905f2E>:
20004: 65 47 4f 4e 2e 42 54 30 eGON.BT0
2000c: 39 6c 0a 5f 00 00 00 00 9l._....

Note: The header is not documented in the manual.

SPI flash
We need to actively read from SPI flash and have no MMIO access to it.

D1 Boot Behavior
Mask ROM
It loads a blob from SPI flash, eMMC or SD card into SRAM (32K).
The blob has to start with a specific eGON header:
Disassembly of section .head:

0000000000020000 <head_jump>:
20000: a5 a0 j 0x20068 <start+0x8>
20002: 00 00 unimp

0000000000020004 <_ZN17oreboot_nezha_bt09EGON_HEAD17h5aa4b41b712905f2E>:
20004: 65 47 4f 4e 2e 42 54 30 eGON.BT0
2000c: 39 6c 0a 5f 00 00 00 00 9l._....

Note: The header is not documented in the manual.

SPI flash
We need to actively read from SPI flash and have no MMIO access to it.

D1 Boot Behavior
Mask ROM
It loads a blob from SPI flash, eMMC or SD card into SRAM (32K).
The blob has to start with a specific eGON header:
Disassembly of section .head:

0000000000020000 <head_jump>:
20000: a5 a0 j 0x20068 <start+0x8>
20002: 00 00 unimp

0000000000020004 <_ZN17oreboot_nezha_bt09EGON_HEAD17h5aa4b41b712905f2E>:
20004: 65 47 4f 4e 2e 42 54 30 eGON.BT0
2000c: 39 6c 0a 5f 00 00 00 00 9l._....

Note: The header is not documented in the manual.

SPI flash
We need to actively read from SPI flash and have no MMIO access to it.

D1 oreboot Flow

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/
It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage
First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

https://github.com/luojia65/test-d1-flash-bare/

D1 oreboot Flow

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/

It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage
First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

https://github.com/luojia65/test-d1-flash-bare/

D1 oreboot Flow

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/
It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage
First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

https://github.com/luojia65/test-d1-flash-bare/

D1 oreboot Flow

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/
It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage

First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

https://github.com/luojia65/test-d1-flash-bare/

D1 oreboot Flow

SRAM Stage
Boot from flash and DRAM init were prototyped separately:
https://github.com/luojia65/test‑d1‑flash‑bare/
It has been copied and developed further in oreboot:
src/mainboard/sunxi/nezha/bt0

Payloader Stage
First RustSBI implementation in oreboot is for Allwinner Nezha (D1):
src/mainboard/sunxi/nezha/main

https://github.com/luojia65/test-d1-flash-bare/

D1 DRAM init

Remember: The DRAM controller is not documented in the manual, only
its existence.

a bit less than 2000 lines of code
▶ translated from C, which was translated from assembly dump

There are configurations per board. They could technically be
determined at runtime.

community has knowledge on how it works
▶ some documentation on https://linux‑sunxi.org

I tried my best to name registers; reviews and help wanted!

Wemay be able to reuse at least parts, and apply them to other
Allwinner SoCs.

https://linux-sunxi.org

D1 DRAM init

Remember: The DRAM controller is not documented in the manual, only
its existence.

a bit less than 2000 lines of code
▶ translated from C, which was translated from assembly dump

There are configurations per board. They could technically be
determined at runtime.

community has knowledge on how it works
▶ some documentation on https://linux‑sunxi.org

I tried my best to name registers; reviews and help wanted!

Wemay be able to reuse at least parts, and apply them to other
Allwinner SoCs.

https://linux-sunxi.org

D1 DRAM init

Remember: The DRAM controller is not documented in the manual, only
its existence.

a bit less than 2000 lines of code
▶ translated from C, which was translated from assembly dump

There are configurations per board. They could technically be
determined at runtime.

community has knowledge on how it works
▶ some documentation on https://linux‑sunxi.org

I tried my best to name registers; reviews and help wanted!

Wemay be able to reuse at least parts, and apply them to other
Allwinner SoCs.

https://linux-sunxi.org

D1 DRAM init

Remember: The DRAM controller is not documented in the manual, only
its existence.

a bit less than 2000 lines of code
▶ translated from C, which was translated from assembly dump

There are configurations per board. They could technically be
determined at runtime.

community has knowledge on how it works
▶ some documentation on https://linux‑sunxi.org

I tried my best to name registers; reviews and help wanted!

Wemay be able to reuse at least parts, and apply them to other
Allwinner SoCs.

https://linux-sunxi.org

D1 DRAM init

Remember: The DRAM controller is not documented in the manual, only
its existence.

a bit less than 2000 lines of code
▶ translated from C, which was translated from assembly dump

There are configurations per board. They could technically be
determined at runtime.

community has knowledge on how it works
▶ some documentation on https://linux‑sunxi.org

I tried my best to name registers; reviews and help wanted!

Wemay be able to reuse at least parts, and apply them to other
Allwinner SoCs.

https://linux-sunxi.org

D1 DRAM init

Remember: The DRAM controller is not documented in the manual, only
its existence.

a bit less than 2000 lines of code
▶ translated from C, which was translated from assembly dump

There are configurations per board. They could technically be
determined at runtime.

community has knowledge on how it works
▶ some documentation on https://linux‑sunxi.org

I tried my best to name registers; reviews and help wanted!

Wemay be able to reuse at least parts, and apply them to other
Allwinner SoCs.

https://linux-sunxi.org

D1 Development Status

avilable in main branch
boot from SPI flash
SD card work in progress
SBI is optional
multiple boards supported

We can boot
Linux \o/
xv6
MnemOS
r9

more to come: FreeBSD, Illumos…

Bare metal testing app
https://github.com/adamgreig/d1rgb

https://github.com/adamgreig/d1rgb

D1 Development Status
avilable in main branch
boot from SPI flash
SD card work in progress
SBI is optional
multiple boards supported

We can boot
Linux \o/
xv6
MnemOS
r9

more to come: FreeBSD, Illumos…

Bare metal testing app
https://github.com/adamgreig/d1rgb

https://github.com/adamgreig/d1rgb

D1 Development Status
avilable in main branch
boot from SPI flash
SD card work in progress
SBI is optional
multiple boards supported

We can boot
Linux \o/
xv6
MnemOS
r9

more to come: FreeBSD, Illumos…

Bare metal testing app
https://github.com/adamgreig/d1rgb

https://github.com/adamgreig/d1rgb

D1 Development Status
avilable in main branch
boot from SPI flash
SD card work in progress
SBI is optional
multiple boards supported

We can boot
Linux \o/
xv6
MnemOS
r9

more to come: FreeBSD, Illumos…

Bare metal testing app
https://github.com/adamgreig/d1rgb

https://github.com/adamgreig/d1rgb

StarFive JH7100

JH7100 SoC

Production
no longer produced, but the successor JH7110 SoC appears to be using
the same DRAM controller and parts, judging from very similar vendor
code

Cores
2x U74 core, >1GHz

▶ https://sifive.cdn.prismic.io/sifive/ad5577a0‑9a00‑45c9‑a5d0‑
424a3d586060_u74_core_complex_manual_21G3.pdf

1x VP6

Documentation
no full manual publicly available
instructions for firmware recovery with open tools
sparse datasheet with list of peripheral blocks and suppliers (p23)

▶ less than 140 pages
https://github.com/starfive‑tech/JH7100_docs

https://sifive.cdn.prismic.io/sifive/ad5577a0-9a00-45c9-a5d0-424a3d586060_u74_core_complex_manual_21G3.pdf
https://sifive.cdn.prismic.io/sifive/ad5577a0-9a00-45c9-a5d0-424a3d586060_u74_core_complex_manual_21G3.pdf
https://github.com/starfive-tech/JH7100_docs

JH7100 SoC
Production
no longer produced, but the successor JH7110 SoC appears to be using
the same DRAM controller and parts, judging from very similar vendor
code

Cores
2x U74 core, >1GHz

▶ https://sifive.cdn.prismic.io/sifive/ad5577a0‑9a00‑45c9‑a5d0‑
424a3d586060_u74_core_complex_manual_21G3.pdf

1x VP6

Documentation
no full manual publicly available
instructions for firmware recovery with open tools
sparse datasheet with list of peripheral blocks and suppliers (p23)

▶ less than 140 pages
https://github.com/starfive‑tech/JH7100_docs

https://sifive.cdn.prismic.io/sifive/ad5577a0-9a00-45c9-a5d0-424a3d586060_u74_core_complex_manual_21G3.pdf
https://sifive.cdn.prismic.io/sifive/ad5577a0-9a00-45c9-a5d0-424a3d586060_u74_core_complex_manual_21G3.pdf
https://github.com/starfive-tech/JH7100_docs

JH7100 SoC
Production
no longer produced, but the successor JH7110 SoC appears to be using
the same DRAM controller and parts, judging from very similar vendor
code

Cores
2x U74 core, >1GHz

▶ https://sifive.cdn.prismic.io/sifive/ad5577a0‑9a00‑45c9‑a5d0‑
424a3d586060_u74_core_complex_manual_21G3.pdf

1x VP6

Documentation
no full manual publicly available
instructions for firmware recovery with open tools
sparse datasheet with list of peripheral blocks and suppliers (p23)

▶ less than 140 pages
https://github.com/starfive‑tech/JH7100_docs

https://sifive.cdn.prismic.io/sifive/ad5577a0-9a00-45c9-a5d0-424a3d586060_u74_core_complex_manual_21G3.pdf
https://sifive.cdn.prismic.io/sifive/ad5577a0-9a00-45c9-a5d0-424a3d586060_u74_core_complex_manual_21G3.pdf
https://github.com/starfive-tech/JH7100_docs

JH7100 SoC
Production
no longer produced, but the successor JH7110 SoC appears to be using
the same DRAM controller and parts, judging from very similar vendor
code

Cores
2x U74 core, >1GHz

▶ https://sifive.cdn.prismic.io/sifive/ad5577a0‑9a00‑45c9‑a5d0‑
424a3d586060_u74_core_complex_manual_21G3.pdf

1x VP6

Documentation
no full manual publicly available
instructions for firmware recovery with open tools
sparse datasheet with list of peripheral blocks and suppliers (p23)

▶ less than 140 pages
https://github.com/starfive‑tech/JH7100_docs

https://sifive.cdn.prismic.io/sifive/ad5577a0-9a00-45c9-a5d0-424a3d586060_u74_core_complex_manual_21G3.pdf
https://sifive.cdn.prismic.io/sifive/ad5577a0-9a00-45c9-a5d0-424a3d586060_u74_core_complex_manual_21G3.pdf
https://github.com/starfive-tech/JH7100_docs

JH7100 Boards

BeagleV
only a select few people received the board as a prototype

StarFive VisionFive 1

obtained via RISC‑V International developer program
https://riscv.org/risc‑v‑developer‑boards/details/

https://riscv.org/risc-v-developer-boards/details/

JH7100 Boards
BeagleV
only a select few people received the board as a prototype

StarFive VisionFive 1

obtained via RISC‑V International developer program
https://riscv.org/risc‑v‑developer‑boards/details/

https://riscv.org/risc-v-developer-boards/details/

JH7100 Boards
BeagleV
only a select few people received the board as a prototype

StarFive VisionFive 1

obtained via RISC‑V International developer program
https://riscv.org/risc‑v‑developer‑boards/details/

https://riscv.org/risc-v-developer-boards/details/

JH7100 Development Stream
Live: https://twitch.tv/cyrevolt

Archive: https://www.youtube.com/playlist?list=PLenOHeTI_A9PSGshD
nEc4dYK‑GSnCshk6

https://twitch.tv/cyrevolt
https://www.youtube.com/playlist?list=PLenOHeTI_A9PSGshDnEc4dYK-GSnCshk6
https://www.youtube.com/playlist?list=PLenOHeTI_A9PSGshDnEc4dYK-GSnCshk6

JH7100 Vendor Code and Transition Plan

JH7100 Boot Behavior

Mask ROM
not documented; can be dumped via preflashed U‑Boot
It loads a blob to SRAM, which has to be prefixed with a 4‑byte value for
its size.

SPI flash
MMIO access to the SPI flash is available, requiring little initialization.
This means that loading from flash is just like copying from on area in
memory to another.

Multicore
Note: Multiple cores allows for accessing peripherals in parallel.
Strategy: loop second hart; when done with peripherals, jump to OS.

JH7100 Boot Behavior

Mask ROM
not documented; can be dumped via preflashed U‑Boot

It loads a blob to SRAM, which has to be prefixed with a 4‑byte value for
its size.

SPI flash
MMIO access to the SPI flash is available, requiring little initialization.
This means that loading from flash is just like copying from on area in
memory to another.

Multicore
Note: Multiple cores allows for accessing peripherals in parallel.
Strategy: loop second hart; when done with peripherals, jump to OS.

JH7100 Boot Behavior

Mask ROM
not documented; can be dumped via preflashed U‑Boot
It loads a blob to SRAM, which has to be prefixed with a 4‑byte value for
its size.

SPI flash
MMIO access to the SPI flash is available, requiring little initialization.
This means that loading from flash is just like copying from on area in
memory to another.

Multicore
Note: Multiple cores allows for accessing peripherals in parallel.
Strategy: loop second hart; when done with peripherals, jump to OS.

JH7100 Boot Behavior

Mask ROM
not documented; can be dumped via preflashed U‑Boot
It loads a blob to SRAM, which has to be prefixed with a 4‑byte value for
its size.

SPI flash

MMIO access to the SPI flash is available, requiring little initialization.
This means that loading from flash is just like copying from on area in
memory to another.

Multicore
Note: Multiple cores allows for accessing peripherals in parallel.
Strategy: loop second hart; when done with peripherals, jump to OS.

JH7100 Boot Behavior

Mask ROM
not documented; can be dumped via preflashed U‑Boot
It loads a blob to SRAM, which has to be prefixed with a 4‑byte value for
its size.

SPI flash
MMIO access to the SPI flash is available, requiring little initialization.

This means that loading from flash is just like copying from on area in
memory to another.

Multicore
Note: Multiple cores allows for accessing peripherals in parallel.
Strategy: loop second hart; when done with peripherals, jump to OS.

JH7100 Boot Behavior

Mask ROM
not documented; can be dumped via preflashed U‑Boot
It loads a blob to SRAM, which has to be prefixed with a 4‑byte value for
its size.

SPI flash
MMIO access to the SPI flash is available, requiring little initialization.
This means that loading from flash is just like copying from on area in
memory to another.

Multicore
Note: Multiple cores allows for accessing peripherals in parallel.
Strategy: loop second hart; when done with peripherals, jump to OS.

JH7100 Boot Behavior

Mask ROM
not documented; can be dumped via preflashed U‑Boot
It loads a blob to SRAM, which has to be prefixed with a 4‑byte value for
its size.

SPI flash
MMIO access to the SPI flash is available, requiring little initialization.
This means that loading from flash is just like copying from on area in
memory to another.

Multicore
Note: Multiple cores allows for accessing peripherals in parallel.

Strategy: loop second hart; when done with peripherals, jump to OS.

JH7100 Boot Behavior

Mask ROM
not documented; can be dumped via preflashed U‑Boot
It loads a blob to SRAM, which has to be prefixed with a 4‑byte value for
its size.

SPI flash
MMIO access to the SPI flash is available, requiring little initialization.
This means that loading from flash is just like copying from on area in
memory to another.

Multicore
Note: Multiple cores allows for accessing peripherals in parallel.
Strategy: loop second hart; when done with peripherals, jump to OS.

DRAM init

We started with a case study, analyzing how the vendor code works.

https://github.com/starfive‑tech/JH7100_ddrinit

more than 4000 lines
quite some registers have comments
lots of magic values, little logic
more than 50% is just writing 0, probably unnecessary

We found and fixed a double bug in the vendor code:

writing back to the wrong register

We reported the issue, with no reply so far.

https://github.com/starfive‑tech/JH7100_ddrinit/issues/14

https://github.com/starfive-tech/JH7100_ddrinit
https://github.com/starfive-tech/JH7100_ddrinit/issues/14

DRAM init

We started with a case study, analyzing how the vendor code works.

https://github.com/starfive‑tech/JH7100_ddrinit

more than 4000 lines
quite some registers have comments
lots of magic values, little logic
more than 50% is just writing 0, probably unnecessary

We found and fixed a double bug in the vendor code:

writing back to the wrong register

We reported the issue, with no reply so far.

https://github.com/starfive‑tech/JH7100_ddrinit/issues/14

https://github.com/starfive-tech/JH7100_ddrinit
https://github.com/starfive-tech/JH7100_ddrinit/issues/14

DRAM init

We started with a case study, analyzing how the vendor code works.

https://github.com/starfive‑tech/JH7100_ddrinit

more than 4000 lines
quite some registers have comments
lots of magic values, little logic
more than 50% is just writing 0, probably unnecessary

We found and fixed a double bug in the vendor code:

writing back to the wrong register

We reported the issue, with no reply so far.

https://github.com/starfive‑tech/JH7100_ddrinit/issues/14

https://github.com/starfive-tech/JH7100_ddrinit
https://github.com/starfive-tech/JH7100_ddrinit/issues/14

DRAM init

We started with a case study, analyzing how the vendor code works.

https://github.com/starfive‑tech/JH7100_ddrinit

more than 4000 lines
quite some registers have comments
lots of magic values, little logic
more than 50% is just writing 0, probably unnecessary

We found and fixed a double bug in the vendor code:

writing back to the wrong register

We reported the issue, with no reply so far.

https://github.com/starfive‑tech/JH7100_ddrinit/issues/14

https://github.com/starfive-tech/JH7100_ddrinit
https://github.com/starfive-tech/JH7100_ddrinit/issues/14

DRAM init

We started with a case study, analyzing how the vendor code works.

https://github.com/starfive‑tech/JH7100_ddrinit

more than 4000 lines
quite some registers have comments
lots of magic values, little logic
more than 50% is just writing 0, probably unnecessary

We found and fixed a double bug in the vendor code:

writing back to the wrong register

We reported the issue, with no reply so far.

https://github.com/starfive‑tech/JH7100_ddrinit/issues/14

https://github.com/starfive-tech/JH7100_ddrinit
https://github.com/starfive-tech/JH7100_ddrinit/issues/14

JH7100 Development Status

pull request open with DRAM init and jump to next stage
https://github.com/oreboot/oreboot/pull/606
we currently load and jump to the U‑Boot + OpenSBI blob

▶ which can then load Linux, e.g., via network

https://github.com/oreboot/oreboot/pull/606

Approaches and Future Work

Talking to peripherals

Register Blocks
A register block is a set of register that maps to a block in the SoC.
The start is called the base register.
const CCU_BASE: usize = 0x0200_1000;
const CCU_PLL_PERI0_CTRL: usize = CCU_BASE + 0x0020;

MMIO (memory‑mapped input/output)
Writing to a peripheral register happens through amemory write
instruction.
To change a value, read first, apply a mask, and write back.
Example:
unsafe {

let peri0_ctrl = read_volatile(CCU_PLL_PERI0_CTRL as *mut u32);
let new_val = peri0_ctrl | 1 << 29; // set bit `29`
write_volatile(CCU_PLL_PERI0_CTRL as *mut u32, new_val);

}

Talking to peripherals
Register Blocks

A register block is a set of register that maps to a block in the SoC.
The start is called the base register.
const CCU_BASE: usize = 0x0200_1000;
const CCU_PLL_PERI0_CTRL: usize = CCU_BASE + 0x0020;

MMIO (memory‑mapped input/output)
Writing to a peripheral register happens through amemory write
instruction.
To change a value, read first, apply a mask, and write back.
Example:
unsafe {

let peri0_ctrl = read_volatile(CCU_PLL_PERI0_CTRL as *mut u32);
let new_val = peri0_ctrl | 1 << 29; // set bit `29`
write_volatile(CCU_PLL_PERI0_CTRL as *mut u32, new_val);

}

Talking to peripherals
Register Blocks
A register block is a set of register that maps to a block in the SoC.

The start is called the base register.
const CCU_BASE: usize = 0x0200_1000;
const CCU_PLL_PERI0_CTRL: usize = CCU_BASE + 0x0020;

MMIO (memory‑mapped input/output)
Writing to a peripheral register happens through amemory write
instruction.
To change a value, read first, apply a mask, and write back.
Example:
unsafe {

let peri0_ctrl = read_volatile(CCU_PLL_PERI0_CTRL as *mut u32);
let new_val = peri0_ctrl | 1 << 29; // set bit `29`
write_volatile(CCU_PLL_PERI0_CTRL as *mut u32, new_val);

}

Talking to peripherals
Register Blocks
A register block is a set of register that maps to a block in the SoC.
The start is called the base register.

const CCU_BASE: usize = 0x0200_1000;
const CCU_PLL_PERI0_CTRL: usize = CCU_BASE + 0x0020;

MMIO (memory‑mapped input/output)
Writing to a peripheral register happens through amemory write
instruction.
To change a value, read first, apply a mask, and write back.
Example:
unsafe {

let peri0_ctrl = read_volatile(CCU_PLL_PERI0_CTRL as *mut u32);
let new_val = peri0_ctrl | 1 << 29; // set bit `29`
write_volatile(CCU_PLL_PERI0_CTRL as *mut u32, new_val);

}

Talking to peripherals
Register Blocks
A register block is a set of register that maps to a block in the SoC.
The start is called the base register.
const CCU_BASE: usize = 0x0200_1000;
const CCU_PLL_PERI0_CTRL: usize = CCU_BASE + 0x0020;

MMIO (memory‑mapped input/output)
Writing to a peripheral register happens through amemory write
instruction.
To change a value, read first, apply a mask, and write back.
Example:
unsafe {

let peri0_ctrl = read_volatile(CCU_PLL_PERI0_CTRL as *mut u32);
let new_val = peri0_ctrl | 1 << 29; // set bit `29`
write_volatile(CCU_PLL_PERI0_CTRL as *mut u32, new_val);

}

Talking to peripherals
Register Blocks
A register block is a set of register that maps to a block in the SoC.
The start is called the base register.
const CCU_BASE: usize = 0x0200_1000;
const CCU_PLL_PERI0_CTRL: usize = CCU_BASE + 0x0020;

MMIO (memory‑mapped input/output)
Writing to a peripheral register happens through amemory write
instruction.

To change a value, read first, apply a mask, and write back.
Example:
unsafe {

let peri0_ctrl = read_volatile(CCU_PLL_PERI0_CTRL as *mut u32);
let new_val = peri0_ctrl | 1 << 29; // set bit `29`
write_volatile(CCU_PLL_PERI0_CTRL as *mut u32, new_val);

}

Talking to peripherals
Register Blocks
A register block is a set of register that maps to a block in the SoC.
The start is called the base register.
const CCU_BASE: usize = 0x0200_1000;
const CCU_PLL_PERI0_CTRL: usize = CCU_BASE + 0x0020;

MMIO (memory‑mapped input/output)
Writing to a peripheral register happens through amemory write
instruction.
To change a value, read first, apply a mask, and write back.

Example:
unsafe {

let peri0_ctrl = read_volatile(CCU_PLL_PERI0_CTRL as *mut u32);
let new_val = peri0_ctrl | 1 << 29; // set bit `29`
write_volatile(CCU_PLL_PERI0_CTRL as *mut u32, new_val);

}

Talking to peripherals
Register Blocks
A register block is a set of register that maps to a block in the SoC.
The start is called the base register.
const CCU_BASE: usize = 0x0200_1000;
const CCU_PLL_PERI0_CTRL: usize = CCU_BASE + 0x0020;

MMIO (memory‑mapped input/output)
Writing to a peripheral register happens through amemory write
instruction.
To change a value, read first, apply a mask, and write back.
Example:
unsafe {

let peri0_ctrl = read_volatile(CCU_PLL_PERI0_CTRL as *mut u32);
let new_val = peri0_ctrl | 1 << 29; // set bit `29`
write_volatile(CCU_PLL_PERI0_CTRL as *mut u32, new_val);

}

SVD ‑> PAC ‑> HAL

https://github.com/duskmoon314/aw‑pac/tree/main/d1‑pac

https://docs.rs/d1‑pac/latest/d1_pac
Image under CC BY 4.0

Layers in oreboot
1. App (mainboard)
2. HAL (“drivers”)
3. PAC (if available)

PACs are commonly
generated from SVD files.

https://docs.rust‑embedded.org/book/portability/index.html

https://github.com/duskmoon314/aw-pac/tree/main/d1-pac
https://docs.rs/d1-pac/latest/d1_pac
https://docs.rust-embedded.org/book/portability/index.html

SVD ‑> PAC ‑> HAL

https://github.com/duskmoon314/aw‑pac/tree/main/d1‑pac

https://docs.rs/d1‑pac/latest/d1_pac
Image under CC BY 4.0

Layers in oreboot
1. App (mainboard)
2. HAL (“drivers”)
3. PAC (if available)

PACs are commonly
generated from SVD files.

https://docs.rust‑embedded.org/book/portability/index.html

https://github.com/duskmoon314/aw-pac/tree/main/d1-pac
https://docs.rs/d1-pac/latest/d1_pac
https://docs.rust-embedded.org/book/portability/index.html

SVD ‑> PAC ‑> HAL

https://github.com/duskmoon314/aw‑pac/tree/main/d1‑pac

https://docs.rs/d1‑pac/latest/d1_pac

Image under CC BY 4.0

Layers in oreboot
1. App (mainboard)
2. HAL (“drivers”)
3. PAC (if available)

PACs are commonly
generated from SVD files.

https://docs.rust‑embedded.org/book/portability/index.html

https://github.com/duskmoon314/aw-pac/tree/main/d1-pac
https://docs.rs/d1-pac/latest/d1_pac
https://docs.rust-embedded.org/book/portability/index.html

SVD ‑> PAC ‑> HAL

https://github.com/duskmoon314/aw‑pac/tree/main/d1‑pac

https://docs.rs/d1‑pac/latest/d1_pac
Image under CC BY 4.0

Layers in oreboot
1. App (mainboard)
2. HAL (“drivers”)
3. PAC (if available)

PACs are commonly
generated from SVD files.

https://docs.rust‑embedded.org/book/portability/index.html

https://github.com/duskmoon314/aw-pac/tree/main/d1-pac
https://docs.rs/d1-pac/latest/d1_pac
https://docs.rust-embedded.org/book/portability/index.html

SVD ‑> PAC ‑> HAL

https://github.com/duskmoon314/aw‑pac/tree/main/d1‑pac

https://docs.rs/d1‑pac/latest/d1_pac
Image under CC BY 4.0

Layers in oreboot
1. App (mainboard)
2. HAL (“drivers”)
3. PAC (if available)

PACs are commonly
generated from SVD files.

https://docs.rust‑embedded.org/book/portability/index.html

https://github.com/duskmoon314/aw-pac/tree/main/d1-pac
https://docs.rs/d1-pac/latest/d1_pac
https://docs.rust-embedded.org/book/portability/index.html

SVD ‑> PAC ‑> HAL

https://github.com/duskmoon314/aw‑pac/tree/main/d1‑pac

https://docs.rs/d1‑pac/latest/d1_pac
Image under CC BY 4.0

Layers in oreboot
1. App (mainboard)
2. HAL (“drivers”)
3. PAC (if available)

PACs are commonly
generated from SVD files.

https://docs.rust‑embedded.org/book/portability/index.html

https://github.com/duskmoon314/aw-pac/tree/main/d1-pac
https://docs.rs/d1-pac/latest/d1_pac
https://docs.rust-embedded.org/book/portability/index.html

Using a peripheral access crate (PAC)

Instead of using write_volatile directly, we call a semantic function
from a library:
// light up led
let mut pb5 = gpio.portb.pb5.into_output();
pb5.set_high().unwrap();

Depending on the API, wemay need to use a writer interface and pass a
function:
ccu.smhc0_clk.write(|w| w.clk_src_sel().pll_peri_1x());

Using a peripheral access crate (PAC)

Instead of using write_volatile directly, we call a semantic function
from a library:

// light up led
let mut pb5 = gpio.portb.pb5.into_output();
pb5.set_high().unwrap();

Depending on the API, wemay need to use a writer interface and pass a
function:
ccu.smhc0_clk.write(|w| w.clk_src_sel().pll_peri_1x());

Using a peripheral access crate (PAC)

Instead of using write_volatile directly, we call a semantic function
from a library:
// light up led
let mut pb5 = gpio.portb.pb5.into_output();
pb5.set_high().unwrap();

Depending on the API, wemay need to use a writer interface and pass a
function:
ccu.smhc0_clk.write(|w| w.clk_src_sel().pll_peri_1x());

Using a peripheral access crate (PAC)

Instead of using write_volatile directly, we call a semantic function
from a library:
// light up led
let mut pb5 = gpio.portb.pb5.into_output();
pb5.set_high().unwrap();

Depending on the API, wemay need to use a writer interface and pass a
function:

ccu.smhc0_clk.write(|w| w.clk_src_sel().pll_peri_1x());

Using a peripheral access crate (PAC)

Instead of using write_volatile directly, we call a semantic function
from a library:
// light up led
let mut pb5 = gpio.portb.pb5.into_output();
pb5.set_high().unwrap();

Depending on the API, wemay need to use a writer interface and pass a
function:
ccu.smhc0_clk.write(|w| w.clk_src_sel().pll_peri_1x());

RISC‑V Runtime Services

Runtime Services are listed in platform specs, referencing the SBI spec.
https://github.com/riscv/riscv‑platform‑specs

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Ports need to be written per platform (core/SoC/board). We have one
for the D1.

In oreboot, we use RustSBI.
https://github.com/rustsbi/rustsbi
https://docs.rs/rustsbi/latest/rustsbi/

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://github.com/rustsbi/rustsbi
https://docs.rs/rustsbi/latest/rustsbi/

RISC‑V Runtime Services

Runtime Services are listed in platform specs, referencing the SBI spec.
https://github.com/riscv/riscv‑platform‑specs

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Ports need to be written per platform (core/SoC/board). We have one
for the D1.

In oreboot, we use RustSBI.
https://github.com/rustsbi/rustsbi
https://docs.rs/rustsbi/latest/rustsbi/

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://github.com/rustsbi/rustsbi
https://docs.rs/rustsbi/latest/rustsbi/

RISC‑V Runtime Services

Runtime Services are listed in platform specs, referencing the SBI spec.
https://github.com/riscv/riscv‑platform‑specs

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Ports need to be written per platform (core/SoC/board). We have one
for the D1.

In oreboot, we use RustSBI.
https://github.com/rustsbi/rustsbi
https://docs.rs/rustsbi/latest/rustsbi/

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://github.com/rustsbi/rustsbi
https://docs.rs/rustsbi/latest/rustsbi/

RISC‑V Runtime Services

Runtime Services are listed in platform specs, referencing the SBI spec.
https://github.com/riscv/riscv‑platform‑specs

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Ports need to be written per platform (core/SoC/board). We have one
for the D1.

In oreboot, we use RustSBI.
https://github.com/rustsbi/rustsbi
https://docs.rs/rustsbi/latest/rustsbi/

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://github.com/rustsbi/rustsbi
https://docs.rs/rustsbi/latest/rustsbi/

RISC‑V Runtime Services

Runtime Services are listed in platform specs, referencing the SBI spec.
https://github.com/riscv/riscv‑platform‑specs

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Ports need to be written per platform (core/SoC/board). We have one
for the D1.

In oreboot, we use RustSBI.
https://github.com/rustsbi/rustsbi
https://docs.rs/rustsbi/latest/rustsbi/

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://github.com/rustsbi/rustsbi
https://docs.rs/rustsbi/latest/rustsbi/

RISC‑V Runtime Services

Runtime Services are listed in platform specs, referencing the SBI spec.
https://github.com/riscv/riscv‑platform‑specs

The SBI (Supervisor Binary Interface) spec is a living document:
https://github.com/riscv‑non‑isa/riscv‑sbi‑doc

It defines extensions and functions similar to system calls.

Ports need to be written per platform (core/SoC/board). We have one
for the D1.

In oreboot, we use RustSBI.
https://github.com/rustsbi/rustsbi
https://docs.rs/rustsbi/latest/rustsbi/

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#runtime-services
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://github.com/rustsbi/rustsbi
https://docs.rs/rustsbi/latest/rustsbi/

A note on RISC‑V customizability

The platform specs define sets of instructions necessary in order to run
an OS.

There are Control and Status Registers (CSRs), similar to x86 MSRs.

They allow for vendor specific custom extensions.

Theymay be required for full usage of the SoC.

Vendors may also implement custom instructions.

Both CSRs and custom instructions may be neglected, and a subset of
the SoC’s capabilities be used.

A note on RISC‑V customizability

The platform specs define sets of instructions necessary in order to run
an OS.

There are Control and Status Registers (CSRs), similar to x86 MSRs.

They allow for vendor specific custom extensions.

Theymay be required for full usage of the SoC.

Vendors may also implement custom instructions.

Both CSRs and custom instructions may be neglected, and a subset of
the SoC’s capabilities be used.

A note on RISC‑V customizability

The platform specs define sets of instructions necessary in order to run
an OS.

There are Control and Status Registers (CSRs), similar to x86 MSRs.

They allow for vendor specific custom extensions.

Theymay be required for full usage of the SoC.

Vendors may also implement custom instructions.

Both CSRs and custom instructions may be neglected, and a subset of
the SoC’s capabilities be used.

A note on RISC‑V customizability

The platform specs define sets of instructions necessary in order to run
an OS.

There are Control and Status Registers (CSRs), similar to x86 MSRs.

They allow for vendor specific custom extensions.

Theymay be required for full usage of the SoC.

Vendors may also implement custom instructions.

Both CSRs and custom instructions may be neglected, and a subset of
the SoC’s capabilities be used.

A note on RISC‑V customizability

The platform specs define sets of instructions necessary in order to run
an OS.

There are Control and Status Registers (CSRs), similar to x86 MSRs.

They allow for vendor specific custom extensions.

Theymay be required for full usage of the SoC.

Vendors may also implement custom instructions.

Both CSRs and custom instructions may be neglected, and a subset of
the SoC’s capabilities be used.

A note on RISC‑V customizability

The platform specs define sets of instructions necessary in order to run
an OS.

There are Control and Status Registers (CSRs), similar to x86 MSRs.

They allow for vendor specific custom extensions.

Theymay be required for full usage of the SoC.

Vendors may also implement custom instructions.

Both CSRs and custom instructions may be neglected, and a subset of
the SoC’s capabilities be used.

A note on RISC‑V customizability

The platform specs define sets of instructions necessary in order to run
an OS.

There are Control and Status Registers (CSRs), similar to x86 MSRs.

They allow for vendor specific custom extensions.

Theymay be required for full usage of the SoC.

Vendors may also implement custom instructions.

Both CSRs and custom instructions may be neglected, and a subset of
the SoC’s capabilities be used.

Potential RISC‑V SoCs for oreboot

BL808
already available (I have multiple boards)
1x C906 (512MHz), 1x E907, 1x low‑power core

JH7110
already available; some people
received theirs from
crowdfunding campaign
marketed as open source
nomanual available
initial U‑Boot and Linux
sources available
https://github.com/starfive‑
tech/Tools is closed source

TH1520
SoMwith SPI flash placeholder
coming soon
multiple boards offered
https://sipeed.com/licheepi4a

▶ Lichee Pi 4A
▶ Lichee Cluster 4A
▶ Lichee Router 4A
▶ Lichee Pad/Phone 4A

https://github.com/starfive-tech/Tools
https://github.com/starfive-tech/Tools
https://sipeed.com/licheepi4a

Potential RISC‑V SoCs for oreboot
BL808

already available (I have multiple boards)
1x C906 (512MHz), 1x E907, 1x low‑power core

JH7110
already available; some people
received theirs from
crowdfunding campaign
marketed as open source
nomanual available
initial U‑Boot and Linux
sources available
https://github.com/starfive‑
tech/Tools is closed source

TH1520
SoMwith SPI flash placeholder
coming soon
multiple boards offered
https://sipeed.com/licheepi4a

▶ Lichee Pi 4A
▶ Lichee Cluster 4A
▶ Lichee Router 4A
▶ Lichee Pad/Phone 4A

https://github.com/starfive-tech/Tools
https://github.com/starfive-tech/Tools
https://sipeed.com/licheepi4a

Potential RISC‑V SoCs for oreboot
BL808

already available (I have multiple boards)
1x C906 (512MHz), 1x E907, 1x low‑power core

JH7110
already available; some people
received theirs from
crowdfunding campaign
marketed as open source
nomanual available
initial U‑Boot and Linux
sources available
https://github.com/starfive‑
tech/Tools is closed source

TH1520
SoMwith SPI flash placeholder
coming soon
multiple boards offered
https://sipeed.com/licheepi4a

▶ Lichee Pi 4A
▶ Lichee Cluster 4A
▶ Lichee Router 4A
▶ Lichee Pad/Phone 4A

https://github.com/starfive-tech/Tools
https://github.com/starfive-tech/Tools
https://sipeed.com/licheepi4a

Potential RISC‑V SoCs for oreboot
BL808

already available (I have multiple boards)
1x C906 (512MHz), 1x E907, 1x low‑power core

JH7110
already available; some people
received theirs from
crowdfunding campaign
marketed as open source
nomanual available
initial U‑Boot and Linux
sources available
https://github.com/starfive‑
tech/Tools is closed source

TH1520
SoMwith SPI flash placeholder
coming soon
multiple boards offered
https://sipeed.com/licheepi4a

▶ Lichee Pi 4A
▶ Lichee Cluster 4A
▶ Lichee Router 4A
▶ Lichee Pad/Phone 4A

https://github.com/starfive-tech/Tools
https://github.com/starfive-tech/Tools
https://sipeed.com/licheepi4a

Further Work

layoutflash
library within oreboot
idea: DTS for flash partitioning
other ideas: add SBoM

xtask
Rust build framework used in oreboot
needs extension with more boards and common functions factored out

ARM and other ISAs
We had some ARM and x86 boards and discarded them in favor of
getting on.
However, there are issues tracking their status with starting points.
https://github.com/oreboot/oreboot/issues

https://github.com/oreboot/oreboot/issues

Further Work

layoutflash
library within oreboot
idea: DTS for flash partitioning
other ideas: add SBoM

xtask
Rust build framework used in oreboot
needs extension with more boards and common functions factored out

ARM and other ISAs
We had some ARM and x86 boards and discarded them in favor of
getting on.
However, there are issues tracking their status with starting points.
https://github.com/oreboot/oreboot/issues

https://github.com/oreboot/oreboot/issues

Further Work

layoutflash
library within oreboot
idea: DTS for flash partitioning
other ideas: add SBoM

xtask
Rust build framework used in oreboot
needs extension with more boards and common functions factored out

ARM and other ISAs
We had some ARM and x86 boards and discarded them in favor of
getting on.
However, there are issues tracking their status with starting points.
https://github.com/oreboot/oreboot/issues

https://github.com/oreboot/oreboot/issues

Further Work

layoutflash
library within oreboot
idea: DTS for flash partitioning
other ideas: add SBoM

xtask
Rust build framework used in oreboot
needs extension with more boards and common functions factored out

ARM and other ISAs
We had some ARM and x86 boards and discarded them in favor of
getting on.
However, there are issues tracking their status with starting points.
https://github.com/oreboot/oreboot/issues

https://github.com/oreboot/oreboot/issues

Follow Me

Daniel Maslowski

https://github.com/orangecms
https://twitter.com/orangecms
https://twitch.tv/cyrevolt
https://youtube.com/@cyrevolt

https://github.com/oreboot/oreboot

https://metaspora.org/oreboot‑comparison‑riscv‑d1‑jh7100.pdf

https://github.com/orangecms
https://twitter.com/orangecms
https://twitch.tv/cyrevolt
https://youtube.com/@cyrevolt
https://github.com/oreboot/oreboot
https://metaspora.org/oreboot-comparison-riscv-d1-jh7100.pdf

	Let's look at a manual and a memory map!
	Allwinner D1
	StarFive JH7100
	Approaches and Future Work

