

# Look at ME!

### Investigating Intel ME Firmware

Daniel Maslowski





# Disclaimer

# This is not about whether we should trust Intel or any (chip) vendor.

### Many details about the ME are not public or scattered across the web.

### I probably have errors in some places; please report them to me.





# Agenda

- Introduction
- Open Source Firmware
- Intel x86 Hardware
- Motivation
- Firmware Analysis
- Conclusion









# Microcontrollers and fun











# Microcontrollers and SoCs on your x86 mainboard

- Chipset (southbridge)
- Gigabit Ethernet (Gbe)
- USB controller
- PCI(e)
- SATA
- GPU
- ► HD Audio
- Bluetooth module
- Wi-Fi module
- Trusted Platform Module (TPM)
- Embedded Controller (EC)
- Baseboard Management Controller (BMC)



Kaby Lake U Mobile block diagram adapted from Intel specifications











# Open Source Firmware projects

### Host (CPU, main SoC, chipset)

- coreboot
- LinuxBoot
  - Heads
  - u-root

# Embedded Controller (EC)

- Chromium OS EC
- System76 EC

# Baseboard Management Controller (BMC)

- OpenBMC
- 🕨 u-bmc











# A closer look: Denverton platform

### see Intel website and WikiChip



The platform extends industry-leading performance per watt, low thermal design power (TDP), and unprecedented levels of configurable high-speed I/O for accelerated innovation across networking, storage, Internet of Things (IoT), and scalable solutions.

### So what is this...?

Management Engine
 Innovation Engine





# **Innovation Engine**

*Enables next-generation systems to customize solution* firmware *to drive greater operational efficiency, security, and predictive maintenance.* 

No use of it is known so far.





# Intel Management Engine (today)

- Microcontroller unit (MCU)
- part of chipset or System on Chip (SoC)
- connected to SPI flash, CPU, GbE
- started from Active Management Technology (AMT)
- may offer runtime services
- can verify host firmware





# Intel platform boot sequence





# AMT, MEI and ISH

### Active Management Technology

- available through MEI driver
  - hardware monitoring
  - power control
  - OS updates
  - storage
  - proxy for KVM (keyboard, video, mouse)

### Management Engine Interface

implemented in Linux kernel

### **Integrated Sensor Hub**

- dedicated low power co-processor
- implemented in Linux Kernel





# MEBX

### Management Engine BIOS Extensions

- configuration interface in host firmware
- Ctrl + P or F6
- default password is admin





## Once upon a time...



adapted from Igor Skochinksy - Intel ME Myths and Reality,

Wikipedia and Intel





# Intel ME Version 12.0

- release notes are public
- supports TLS 1.2, dropped 1.0
- CIM\_Battery class
- AMT can be disabled
- category of "super\_critical" events





# ME Firmware Variants

| CON(S) | Consumer                 |
|--------|--------------------------|
| COR(P) | Corporate                |
| SLM(?) | Slim                     |
| SPS    | Server Platform Services |
| IGN(?) | Ignition                 |









# First public release of a redistributable ME firmware binary

# EDK II non-osi mailing list

Ignition Firmware is a variant of ME firmware that is intended to provide lightweight chipset initialization. It does not contain all the features of the Intel<sup>®</sup> Server Platform Services (SPS) ME firmware. Ignition Firmware is consequently much smaller than Intel<sup>®</sup> SPS Firmware (~0.5 MB vs. ~3 MB).

# Build and distribute full firmware images with binaries

- Firmware Support Package (FSP) for host firmware
- Ignition ME firmware for Cascade Lake / Purley





# Follow the yellow brick road...







# ME Ignition Firmware License

*Redistribution and use in binary form, without modification, are permitted, provided that the following conditions are met:* 

- Redistributions must reproduce the above copyright notice and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 2. Neither the name of Intel Corporation nor the names of its suppliers may be used to endorse or promote products derived from this software without specific prior written permission.
- 3. No reverse engineering, decompilation, or disassembly of this software is permitted.





# Pay no attention to that man behind the curtain!







# Philosophy

### training for FSP by Intel

### Philosophy

#### There are ...

- plenty of smart firmware engineers
- comprehensive specifications and standards
- successful implementation examples using various boot loaders.

#### There isn't ...

enough open technical information to program a new silicon

#### Therefore ...

• Intel provides what Intel knows the best, and let the ecosystem do what they are the best at









# Vendor perspective

Intel is working towards releasing as much source code as possible going forward. A binary component is still the best way to encapsulate the complex solution that developers may not necessarily need to bother about as long as the binary component does its job right.

source: FSP whitepaper





### Dexter's Law

### Only proprietary software vendors want proprietary software.





# Spotting the issue

### Attackers do not play by the rules





# First steps







# Previous work / existing resources Analysis

- me\_cleaner and its wiki
- Heads docs on ME cleaner
- MEAnalyzer

### **Reverse engineering**

- ROMP module reverse engineering effort by Youness Alaoui
- Huffman decoders
- tools by Positive Research

### More information

- talks by Igor Skochinsky
- Win-Raid Forum
- talk by Intel at Black Hat USA 2019





# Plundervolt



We build on the reverse engineering efforts of [64, 49, 57] that revealed the existence of an undocumented MSR to adjust operating voltage on Intel Core CPUs. To ensure reproducibil- ity of our findings, we document this concealed interface in detail. All results were experimentally confirmed on our test platforms (cf. Table I).





# Security

Hardware and firmware have to be combined.

PTT is a TPM 2.0 implementation

# Security has many dimensions.

- physical: voltages, hardware accessibility
  - see Plundervolt
- computational: constant-time for crypto ops
  - see TPM Fail
- logical: programmatic flaws

# Auditability is a requirement, fulfilled by open source.

### Theorem



no audit => no trust







# Firmware Partition Table

| 00000000000 | e9eb | 0f02 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |    |
|-------------|------|------|------|------|------|------|------|------|----|
| 00000010:   | 2446 | 5054 | 0a00 | 0000 | 2010 | 209c | ffff | ffff | \$ |
| 00000020:   | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |    |
| 00000030:   | 4654 | 5052 | 0000 | 0000 | 0010 | 0300 | 0000 | 0400 | F  |
| 00000040:   | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | Ι. |
| 00000050:   | 4654 | 5550 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | F  |
| 00000060:   | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 00ff |    |
| 00000070:   | 444c | 4d50 | 0000 | 0000 | 0090 | 0000 | 0080 | 0200 | D  |
| 00000080:   | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |    |
| 00000090:   | 4d46 | 5300 | 0000 | 0000 | 0040 | 0000 | 0020 | 0000 | Μ  |
| 000000a0:   | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0100 | 0000 |    |
| 000000b0:   | 524f | 4d42 | 0000 | 0000 | 0010 | 0000 | 0000 | 0000 | R  |
| 000000c0:   | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0100 | 0000 |    |
| 000000d0:   | 4650 | 5442 | 0000 | 0000 | 0010 | 0000 | 0010 | 0000 | F  |
| 000000e0:   | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0100 | 0000 |    |
| 000000f0:   | 4d46 | 5342 | 0000 | 0000 | 0020 | 0000 | 0020 | 0000 | Μ  |
| 00000100:   | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0100 | 0000 |    |
| 00000110:   | 464c | 4f47 | 0000 | 0000 | 0060 | 0000 | 0010 | 0000 | F  |
| 00000120:   | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0100 | 0000 |    |
| 00000130:   | 5554 | 4f4b | 0000 | 0000 | 0070 | 0000 | 0020 | 0000 | U  |
| 00000140:   | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0100 | 0000 |    |
| 00000150:   | 4643 | 5000 | 0000 | 0000 | 0010 | 0700 | 0020 | 0000 | F  |
| 00000160:   | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0100 | 0000 |    |

| \$FPT.         FTUP         FTUP         MFS.         .@.         ROMB.         FPTB.         FPTB.         FLOG.         YUTOK.         P.           |    |   |   |   |   |  |  |   |  |  |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|---|---|--|--|---|--|--|---|
| FTPR         FTUP         DLMP         MFS@.         ROMB         FPTB         FFTB         FLOG         VTOKp                                        |    | · |   | • |   |  |  |   |  |  |   |
| FTPR           FTUP           DLMP           MFS           @.           ROMB           FPTB           MFSB           FLOG           UTOK           p. | \$ | F | Ρ | T |   |  |  |   |  |  |   |
| FTUP           FTUP           DLMP           MFS           ROMB           FPTB           FFTB           FLOG           UTOK           P.              |    |   |   |   |   |  |  |   |  |  |   |
| FTUP                                                                                                                                                  | F  | T | P | R | I |  |  |   |  |  | l |
| FTUP                                                                                                                                                  |    |   |   |   |   |  |  |   |  |  |   |
| DLMP@<br>MFS@<br>FPTB<br>MFSB<br>FLOG<br>TLOG<br>FCP                                                                                                  | F  | T | U | Ρ |   |  |  |   |  |  |   |
| DLMP@<br>MFS@<br>FPTB<br>FFTB<br>FLOG<br>FLOG<br>FCP                                                                                                  |    |   |   |   |   |  |  |   |  |  |   |
| MFS@<br>ROMB                                                                                                                                          | D  | L | Μ | Ρ |   |  |  |   |  |  |   |
| MFS@<br>ROMB<br>FPTB<br>MFSB<br>FLOG<br>FLOG<br>FCP                                                                                                   |    |   |   |   |   |  |  |   |  |  |   |
| ROMB                                                                                                                                                  | Μ  | F | S |   |   |  |  | 0 |  |  |   |
| ROMB<br>FPTB<br>MFSB<br>FLOG<br>FLOG<br>FCP                                                                                                           | •  |   |   |   |   |  |  |   |  |  |   |
| FPTB                                                                                                                                                  | R  | 0 | Μ | B |   |  |  |   |  |  |   |
| FPTB<br>MFSB<br>FLOG<br>VTOKp<br>FCP.                                                                                                                 |    |   |   |   |   |  |  |   |  |  |   |
| MFSB<br>FLOG                                                                                                                                          | F  | Ρ | T | В |   |  |  |   |  |  |   |
| MFSB<br>FLOG<br>UTOKp<br>FCP                                                                                                                          |    |   |   |   |   |  |  |   |  |  |   |
| FLOG<br>UTOKp<br>FCP                                                                                                                                  | Μ  | F | S | B |   |  |  |   |  |  |   |
| FLOG                                                                                                                                                  | •  |   |   |   |   |  |  |   |  |  |   |
| UTOKp                                                                                                                                                 | F  | L | 0 | G |   |  |  |   |  |  |   |
| UTOKp<br>FCP                                                                                                                                          |    |   |   |   |   |  |  |   |  |  |   |
| FCP                                                                                                                                                   | U  | T | 0 | K |   |  |  | р |  |  |   |
| FCP                                                                                                                                                   |    |   |   |   |   |  |  |   |  |  |   |
|                                                                                                                                                       | F  | C | Ρ |   |   |  |  |   |  |  |   |
|                                                                                                                                                       |    |   |   |   |   |  |  |   |  |  |   |

partition FTPR
 offset

 0x31000
 size 0x40000





# **Code Partition Directory**

Each CPD entry can be either:

- partition manifest (".man"), "old" generation 2 manifest
- module metadata (".met"), also contains the module hash
- module





### CPD data structure

#### see Win-Raid Forum

| 00031000: | 2443 | 5044 | 0500 | 0000 | 0101 | 10b2 | 4654 | 5052 | \$CPD   |
|-----------|------|------|------|------|------|------|------|------|---------|
| 00031010: | 4654 | 5052 | 2e6d | 616e | 0000 | 0000 | 8800 | 0000 | FTPR.ma |
| 00031020: | f003 | 0000 | 0000 | 0000 | 7262 | 6500 | 0000 | 0000 |         |
| 00031030: | 0000 | 0000 | 7005 | 0000 | 0090 | 0200 | 0000 | 0000 | p.      |
| 00031040: | 7262 | 652e | 6d65 | 7400 | 0000 | 0000 | 7804 | 0000 | rbe.me  |
| 00031050: | 7c00 | 0000 | 0000 | 0000 | 6d61 | 6e75 | 6600 | 0000 |         |
| 00031060: | 0000 | 0000 | 7095 | 0200 | 0050 | 0000 | 0000 | 0000 | p.      |
| 00031070: | 6d61 | 6e75 | 662e | 6d65 | 7400 | 0000 | f404 | 0000 | manuf.r |
| 00031080: | 7c00 | 0000 | 0000 | 0000 | 0400 | 0000 | a100 | 0000 |         |
| 00031090: | 0000 | 0100 | 0000 | 0000 | 8680 | 0000 | 1706 | 1920 |         |
| 000310a0: | fc00 | 0000 | 244d | 4e32 | 0000 | 0000 | 0100 | 0000 | \$MI    |
| 000310b0: | 0200 | 1d00 | 0100 | 0000 | 0000 | 0000 | 0000 | 0000 |         |
| 000310c0: | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |         |
| 000310d0: | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |         |
| 000310e0: | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |         |
| 000310f0: | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |         |



file FTPR.man
 offset 0x0088
 size 0x03f0





# FTPR

### meaning unknown; could refer to factory, partition, reset

# files

- FTPR.man FTPR manifest
- 🕨 rbe
- rbe.met
- ▶ manuf
- > manuf.met





# **FTPR** manifest

- seems to consist of three parts (lots of 0000 and ffff may be separators)
- header includes architecture (8086) and date (2019–06–17)
  - followed by the tag \$MN2
- more metadata? (FTPR itself, rbe, manuf)
- 0x7c, 0x200200?





# Trailer?

rbe

7262 6500 0000 0000 0000 0000 0000 ffff 7c00 0000 b5da a898 d17c c016 4c04 3b2c f141 c26b 756a de87 dc2c 59b0 995a f551 ac0d e839

manuf

6d61 6e75 6600 0000 0000 0000 0000 ffff 7c00 0000

9064 981d 6cf7 c15d 9a4a 64aa f081 58cc 2619 a3ae 71ae 6230 8bdb 3694 a7cb 1b83

FTPR

Of00 0000 9c00 0000 4654 5052





# And almost the same thing again

rbe

7262 6500 0000 0000 0000 0000 0002 2000 7c00 0000 b5da a898 d17c c016 4c04 3b2c f141 c26b 756a de87 dc2c 59b0 995a f551 ac0d e839

manuf

6d61 6e75 6600 0000 0000 0000 0002 2000 7c00 0000

9064 981d 6cf7 c15d 9a4a 64aa f081 58cc 2619 a3ae 71ae 6230 8bdb 3694 a7cb 1b83

RCHA - what is that?

3200 0000 1000 0000 5243 4841 0000 0000





#### manuf

### consists of three parts

- bootpart
- boot\_fpt
- ftpr.mft





# x86 Instructions

#### manuf

00000000: 0fa0 66b8 3000 8ee0 b904 0000 0064 8b09 ..f.0.....d.. 00000010: b800 0000 0064 8b00 ba04 0000 0064 8b12 ....d.....d..

PUSH FS ; segment register MOV AX, 0x0030 MOV FS, AX MOV ECX, 0x000004 MOV ECX,DWORD PTR FS:[ECX] MOV EAX, 0x000000

#### References

- push onto stack
- 16-bit and 8-bit registers
- single byte or small x86 opcodes
- x86 assembler in 256 LOC





**PMC** 

included twice, 65584 bytes - 64KB + 48B (3 \* 16B)

#### Last three lines

- probably upper 64KB are actual image and last three lines are meta information
- pmc\_fw\_lbg\_b0-18ww34a looks like a version string





# **Obtaining ME firmware images**

- Lenovo
  - download update, e.g.,
    - https://support.lenovo.com/us/de/downloads/ds503998
  - run innoextract [file] => app/ directory with files
  - one for consumer and one for corporate version, Me xx.x Coxx.bin:)
- HP
  - download update, e.g., h30318.www3.hp.com/pub/softpag/sp99501-100000/sp99829.exe
  - run 7z x [file] (in a new directory) => many files, we want Q72\_xxxxxx.bin
  - xxd Q72 xxxxxx.bin | grep "\\$FPT" (extract line with FPT tag)
  - note down address at beginning without 0 at the end, minus 1
  - dd if=Q72 xxxxxx.bin bs=16 skip=0x[beginning] count=0x1000 of=me.bin
  - run MEA.py over it: MEA.py me.bin
  - check expected length, try higher count for dd in case of error RESOURCE
  - correct the count and dd again => there we go, me.bin:)
- Win-Raid Forum









# Security

### All firmware has to be fully open source.





# Abbreviations and Acronyms

| PMC    | Power Management Controller     |
|--------|---------------------------------|
|        | - ower management controller    |
| MSR    | Model-Specific Register         |
| PCR    | Platform Configuration Register |
| FIT(C) | Flash Image Tool                |
| FPT    | Firmware Partition Table        |
| CPD    | Code Partition Directory        |
| RBE    | ROM Boot Extension              |
| DAL    | Dynamic Application Loader      |
| PTT    | Platform Trust Technology       |
| FPF    | Field Programmable Fuse         |
|        |                                 |





# **Related work**

# Talks from Black Hat USA 2019

- Firmware Cartography: Charting the Course for Modern Server Compromise
- Behind the scenes of iOS and Mac Security
- Inside the Apple T2
- Breaking Through Another Side: Bypassing Firmware Security Boundaries from Embedded Controller
- Breaking Samsung's ARM TrustZone

# Talks by Alexander Ermolov

Safeguarding rootkits: Intel BootGuard







# Thanks!





-



# Questions?

https://github.com/orangecms/look-at-me https://metaspora.org/look-at-me.pdf

