
Drivers From Outer Space
Fast, Simple Driver Development

Daniel Maslowski



Agenda

Hardware and Driver Issues
From Outer Space…?
Seamless Revolution



Introduction



Hello, I am Daniel :‑)

Work and education
IT security and computer science
software engineer
web andmobile apps
infrastructure, UIs
ecommerce, emergency calls

Open Source contributions
hardware and firmware
operating systems
software distributions
reverse engineering
Fiedka the Firmware Editor

https://fiedka.app/


Hardware and Driver Issues



Products in the Wild

There are many hardware products that never receive any updates.

Take these gadgets for example:

Related talk:
https://metaspora.org/repurposing‑gadgets‑fossasia2021.pdf

https://metaspora.org/repurposing-gadgets-fossasia2021.pdf


Products in the Wild

There are many hardware products that never receive any updates.

Take these gadgets for example:

Related talk:
https://metaspora.org/repurposing‑gadgets‑fossasia2021.pdf

https://metaspora.org/repurposing-gadgets-fossasia2021.pdf


Products in the Wild

There are many hardware products that never receive any updates.

Take these gadgets for example:

Related talk:
https://metaspora.org/repurposing‑gadgets‑fossasia2021.pdf

https://metaspora.org/repurposing-gadgets-fossasia2021.pdf


Embedded Devices

They are usually built aroundmicrocontrollers and/or SoCs.

They often run Linux! :‑)

Let’s look inside…

…and solder some wires.



Embedded Devices
They are usually built aroundmicrocontrollers and/or SoCs.

They often run Linux! :‑)

Let’s look inside…

…and solder some wires.



Embedded Devices
They are usually built aroundmicrocontrollers and/or SoCs.

They often run Linux! :‑)

Let’s look inside…

…and solder some wires.



Embedded Devices
They are usually built aroundmicrocontrollers and/or SoCs.

They often run Linux! :‑)

Let’s look inside…

…and solder some wires.



Linux in Firmware

Not a novel idea.

We’re doing this in many projects!

coreboot was originally LinuxBIOS :‑)



Linux in Firmware
Not a novel idea.

We’re doing this in many projects!

coreboot was originally LinuxBIOS :‑)



Linux in Firmware
Not a novel idea.

We’re doing this in many projects!

coreboot was originally LinuxBIOS :‑)



Linux in Firmware
Not a novel idea.

We’re doing this in many projects!

coreboot was originally LinuxBIOS :‑)



Where are the drivers?

Lots of drivers are in mainline Linux, as in, kernel.org.

However, many vendors do not upstream, nor publish their drivers.

If you are lucky, youmay an SDK (software development kit) on the web.

Commonly, their quality is rather low and “just okay”:

prebuilt legacy 32bit toolchains
kernel source dumps as zip files instead of git repos
drivers causing compiler warnings, hacked into existing code

▶ i.e., not upstreamable without reworking them

Some are not open source. Linux logs proprietary drivers as “tainting”.

As a customer making products, you are often required to sign NDAs in
order to receive the SDK from the vendor.

So developers cannot even work with upstream/mainline Linux.

https://kernel.org


Where are the drivers?
Lots of drivers are in mainline Linux, as in, kernel.org.

However, many vendors do not upstream, nor publish their drivers.

If you are lucky, youmay an SDK (software development kit) on the web.

Commonly, their quality is rather low and “just okay”:

prebuilt legacy 32bit toolchains
kernel source dumps as zip files instead of git repos
drivers causing compiler warnings, hacked into existing code

▶ i.e., not upstreamable without reworking them

Some are not open source. Linux logs proprietary drivers as “tainting”.

As a customer making products, you are often required to sign NDAs in
order to receive the SDK from the vendor.

So developers cannot even work with upstream/mainline Linux.

https://kernel.org


Where are the drivers?
Lots of drivers are in mainline Linux, as in, kernel.org.

However, many vendors do not upstream, nor publish their drivers.

If you are lucky, youmay an SDK (software development kit) on the web.

Commonly, their quality is rather low and “just okay”:

prebuilt legacy 32bit toolchains
kernel source dumps as zip files instead of git repos
drivers causing compiler warnings, hacked into existing code

▶ i.e., not upstreamable without reworking them

Some are not open source. Linux logs proprietary drivers as “tainting”.

As a customer making products, you are often required to sign NDAs in
order to receive the SDK from the vendor.

So developers cannot even work with upstream/mainline Linux.

https://kernel.org


Where are the drivers?
Lots of drivers are in mainline Linux, as in, kernel.org.

However, many vendors do not upstream, nor publish their drivers.

If you are lucky, youmay an SDK (software development kit) on the web.

Commonly, their quality is rather low and “just okay”:

prebuilt legacy 32bit toolchains
kernel source dumps as zip files instead of git repos
drivers causing compiler warnings, hacked into existing code

▶ i.e., not upstreamable without reworking them

Some are not open source. Linux logs proprietary drivers as “tainting”.

As a customer making products, you are often required to sign NDAs in
order to receive the SDK from the vendor.

So developers cannot even work with upstream/mainline Linux.

https://kernel.org


Where are the drivers?
Lots of drivers are in mainline Linux, as in, kernel.org.

However, many vendors do not upstream, nor publish their drivers.

If you are lucky, youmay an SDK (software development kit) on the web.

Commonly, their quality is rather low and “just okay”:

prebuilt legacy 32bit toolchains
kernel source dumps as zip files instead of git repos
drivers causing compiler warnings, hacked into existing code

▶ i.e., not upstreamable without reworking them

Some are not open source. Linux logs proprietary drivers as “tainting”.

As a customer making products, you are often required to sign NDAs in
order to receive the SDK from the vendor.

So developers cannot even work with upstream/mainline Linux.

https://kernel.org


Where are the drivers?
Lots of drivers are in mainline Linux, as in, kernel.org.

However, many vendors do not upstream, nor publish their drivers.

If you are lucky, youmay an SDK (software development kit) on the web.

Commonly, their quality is rather low and “just okay”:

prebuilt legacy 32bit toolchains
kernel source dumps as zip files instead of git repos
drivers causing compiler warnings, hacked into existing code

▶ i.e., not upstreamable without reworking them

Some are not open source. Linux logs proprietary drivers as “tainting”.

As a customer making products, you are often required to sign NDAs in
order to receive the SDK from the vendor.

So developers cannot even work with upstream/mainline Linux.

https://kernel.org


Where are the drivers?
Lots of drivers are in mainline Linux, as in, kernel.org.

However, many vendors do not upstream, nor publish their drivers.

If you are lucky, youmay an SDK (software development kit) on the web.

Commonly, their quality is rather low and “just okay”:

prebuilt legacy 32bit toolchains
kernel source dumps as zip files instead of git repos
drivers causing compiler warnings, hacked into existing code

▶ i.e., not upstreamable without reworking them

Some are not open source. Linux logs proprietary drivers as “tainting”.

As a customer making products, you are often required to sign NDAs in
order to receive the SDK from the vendor.

So developers cannot even work with upstream/mainline Linux.

https://kernel.org


Where are the drivers?
Lots of drivers are in mainline Linux, as in, kernel.org.

However, many vendors do not upstream, nor publish their drivers.

If you are lucky, youmay an SDK (software development kit) on the web.

Commonly, their quality is rather low and “just okay”:

prebuilt legacy 32bit toolchains
kernel source dumps as zip files instead of git repos
drivers causing compiler warnings, hacked into existing code

▶ i.e., not upstreamable without reworking them

Some are not open source. Linux logs proprietary drivers as “tainting”.

As a customer making products, you are often required to sign NDAs in
order to receive the SDK from the vendor.

So developers cannot even work with upstream/mainline Linux.

https://kernel.org


From Outer Space…?



Bell Labs, the 90ies

Plan 9 from Bell Labs, a research operating system

Yes, the name is a reference to the Ed Wood 1959 cult science fiction
Z‑movie Plan 9 from Outer Space.
I haven’t seen it. But I’ve run into the OS. :‑)



Bell Labs, the 90ies

Plan 9 from Bell Labs, a research operating system

Yes, the name is a reference to the Ed Wood 1959 cult science fiction
Z‑movie Plan 9 from Outer Space.
I haven’t seen it. But I’ve run into the OS. :‑)



Bell Labs, the 90ies

Plan 9 from Bell Labs, a research operating system

Yes, the name is a reference to the Ed Wood 1959 cult science fiction
Z‑movie Plan 9 from Outer Space.

I haven’t seen it. But I’ve run into the OS. :‑)



Bell Labs, the 90ies

Plan 9 from Bell Labs, a research operating system

Yes, the name is a reference to the Ed Wood 1959 cult science fiction
Z‑movie Plan 9 from Outer Space.
I haven’t seen it. But I’ve run into the OS. :‑)



Plan 9 Concepts

Plan 9 is a network based operating system.

Four primitives
file server: serving files, like NFS, though based on 9P
authentication server: can be compared with modern IAM
cpu server: defining a machine as arbitrary compute resource
terminal: what connects to a cpu server, sends commands

What do wemake out of this?
We are going to apply the idea behind cpu to Linux.



Plan 9 Concepts

Plan 9 is a network based operating system.

Four primitives

file server: serving files, like NFS, though based on 9P
authentication server: can be compared with modern IAM
cpu server: defining a machine as arbitrary compute resource
terminal: what connects to a cpu server, sends commands

What do wemake out of this?
We are going to apply the idea behind cpu to Linux.



Plan 9 Concepts

Plan 9 is a network based operating system.

Four primitives
file server: serving files, like NFS, though based on 9P

authentication server: can be compared with modern IAM
cpu server: defining a machine as arbitrary compute resource
terminal: what connects to a cpu server, sends commands

What do wemake out of this?
We are going to apply the idea behind cpu to Linux.



Plan 9 Concepts

Plan 9 is a network based operating system.

Four primitives
file server: serving files, like NFS, though based on 9P
authentication server: can be compared with modern IAM

cpu server: defining a machine as arbitrary compute resource
terminal: what connects to a cpu server, sends commands

What do wemake out of this?
We are going to apply the idea behind cpu to Linux.



Plan 9 Concepts

Plan 9 is a network based operating system.

Four primitives
file server: serving files, like NFS, though based on 9P
authentication server: can be compared with modern IAM
cpu server: defining a machine as arbitrary compute resource

terminal: what connects to a cpu server, sends commands

What do wemake out of this?
We are going to apply the idea behind cpu to Linux.



Plan 9 Concepts

Plan 9 is a network based operating system.

Four primitives
file server: serving files, like NFS, though based on 9P
authentication server: can be compared with modern IAM
cpu server: defining a machine as arbitrary compute resource
terminal: what connects to a cpu server, sends commands

What do wemake out of this?
We are going to apply the idea behind cpu to Linux.



Plan 9 Concepts

Plan 9 is a network based operating system.

Four primitives
file server: serving files, like NFS, though based on 9P
authentication server: can be compared with modern IAM
cpu server: defining a machine as arbitrary compute resource
terminal: what connects to a cpu server, sends commands

What do wemake out of this?

We are going to apply the idea behind cpu to Linux.



Plan 9 Concepts

Plan 9 is a network based operating system.

Four primitives
file server: serving files, like NFS, though based on 9P
authentication server: can be compared with modern IAM
cpu server: defining a machine as arbitrary compute resource
terminal: what connects to a cpu server, sends commands

What do wemake out of this?
We are going to apply the idea behind cpu to Linux.



The new cpu

Uses SSH for authentication and command transport, 9p or optionally
other means for file transport.

Written in Go, easily portable Second implementation in Rust WIP
Sources and Development
https://github.com/u‑root/cpu
https://book.linuxboot.org/cpu

https://github.com/u-root/cpu
https://book.linuxboot.org/cpu


The new cpu

Uses SSH for authentication and command transport, 9p or optionally
other means for file transport.

Written in Go, easily portable

Second implementation in Rust WIP
Sources and Development
https://github.com/u‑root/cpu
https://book.linuxboot.org/cpu

https://github.com/u-root/cpu
https://book.linuxboot.org/cpu


The new cpu

Uses SSH for authentication and command transport, 9p or optionally
other means for file transport.

Written in Go, easily portable Second implementation in Rust WIP

Sources and Development
https://github.com/u‑root/cpu
https://book.linuxboot.org/cpu

https://github.com/u-root/cpu
https://book.linuxboot.org/cpu


The new cpu

Uses SSH for authentication and command transport, 9p or optionally
other means for file transport.

Written in Go, easily portable Second implementation in Rust WIP
Sources and Development
https://github.com/u‑root/cpu
https://book.linuxboot.org/cpu

https://github.com/u-root/cpu
https://book.linuxboot.org/cpu


Seamless Revolution



Run a command over cpu

Remote target: IP camera running a Linux kernel and cpud. See also:

https://github.com/orangecms/arm‑cpu

hisilicon/HI3516EV200 contains Makefile etc

Grab ipctool from the OpenIPC project to investigate a bit.

https://github.com/openipc/ipctool

https://openipc.org

https://github.com/orangecms/arm-cpu
https://github.com/openipc/ipctool
https://openipc.org


Run a command over cpu

Remote target: IP camera running a Linux kernel and cpud. See also:

https://github.com/orangecms/arm‑cpu

hisilicon/HI3516EV200 contains Makefile etc

Grab ipctool from the OpenIPC project to investigate a bit.

https://github.com/openipc/ipctool

https://openipc.org

https://github.com/orangecms/arm-cpu
https://github.com/openipc/ipctool
https://openipc.org


Run a command over cpu

Remote target: IP camera running a Linux kernel and cpud. See also:

https://github.com/orangecms/arm‑cpu

hisilicon/HI3516EV200 contains Makefile etc

Grab ipctool from the OpenIPC project to investigate a bit.

https://github.com/openipc/ipctool

https://openipc.org

https://github.com/orangecms/arm-cpu
https://github.com/openipc/ipctool
https://openipc.org


DEMO: Run commands over cpu



What did we just do?

CPU_NAMESPACE=/home ../cpu -key ~/.ssh/cpu_rsa 192.168.0.222 \
../bin/ipctool -c

CPU_NAMESPACE=/home: we have the remote mount our /home
onto theirs

../cpu: we run the cpu command from our machine, as we do
with many others

-key ~/.ssh/cpu: we pass our SSH key, can be implicit by
convention

192.168.0.222: the address of the remote machine to run on,
running cpud

../bin/ipctool -c: the command to run on the remote, coming
from us



What did we just do?

CPU_NAMESPACE=/home ../cpu -key ~/.ssh/cpu_rsa 192.168.0.222 \
../bin/ipctool -c

CPU_NAMESPACE=/home: we have the remote mount our /home
onto theirs

../cpu: we run the cpu command from our machine, as we do
with many others

-key ~/.ssh/cpu: we pass our SSH key, can be implicit by
convention

192.168.0.222: the address of the remote machine to run on,
running cpud

../bin/ipctool -c: the command to run on the remote, coming
from us



What did we just do?

CPU_NAMESPACE=/home ../cpu -key ~/.ssh/cpu_rsa 192.168.0.222 \
../bin/ipctool -c

CPU_NAMESPACE=/home: we have the remote mount our /home
onto theirs

../cpu: we run the cpu command from our machine, as we do
with many others

-key ~/.ssh/cpu: we pass our SSH key, can be implicit by
convention

192.168.0.222: the address of the remote machine to run on,
running cpud

../bin/ipctool -c: the command to run on the remote, coming
from us



What did we just do?

CPU_NAMESPACE=/home ../cpu -key ~/.ssh/cpu_rsa 192.168.0.222 \
../bin/ipctool -c

CPU_NAMESPACE=/home: we have the remote mount our /home
onto theirs

../cpu: we run the cpu command from our machine, as we do
with many others

-key ~/.ssh/cpu: we pass our SSH key, can be implicit by
convention

192.168.0.222: the address of the remote machine to run on,
running cpud

../bin/ipctool -c: the command to run on the remote, coming
from us



What did we just do?

CPU_NAMESPACE=/home ../cpu -key ~/.ssh/cpu_rsa 192.168.0.222 \
../bin/ipctool -c

CPU_NAMESPACE=/home: we have the remote mount our /home
onto theirs

../cpu: we run the cpu command from our machine, as we do
with many others

-key ~/.ssh/cpu: we pass our SSH key, can be implicit by
convention

192.168.0.222: the address of the remote machine to run on,
running cpud

../bin/ipctool -c: the command to run on the remote, coming
from us



What did we just do?

CPU_NAMESPACE=/home ../cpu -key ~/.ssh/cpu_rsa 192.168.0.222 \
../bin/ipctool -c

CPU_NAMESPACE=/home: we have the remote mount our /home
onto theirs

../cpu: we run the cpu command from our machine, as we do
with many others

-key ~/.ssh/cpu: we pass our SSH key, can be implicit by
convention

192.168.0.222: the address of the remote machine to run on,
running cpud

../bin/ipctool -c: the command to run on the remote, coming
from us



What did we just do?

CPU_NAMESPACE=/home ../cpu -key ~/.ssh/cpu_rsa 192.168.0.222 \
../bin/ipctool -c

CPU_NAMESPACE=/home: we have the remote mount our /home
onto theirs

../cpu: we run the cpu command from our machine, as we do
with many others

-key ~/.ssh/cpu: we pass our SSH key, can be implicit by
convention

192.168.0.222: the address of the remote machine to run on,
running cpud

../bin/ipctool -c: the command to run on the remote, coming
from us



DEMO: Relationships between host and remote



Load a Driver via cpu

Note: This command is abbreviated to focus on the essential point.

./cpu camera /bbin/insmod ./lib/modules/sys_config.ko

This means that we can write apps and drivers locally, and run them on
the remote right awaywithout explicit copying, NFS shares, USB sticks,
etc! :‑)



Load a Driver via cpu

Note: This command is abbreviated to focus on the essential point.

./cpu camera /bbin/insmod ./lib/modules/sys_config.ko

This means that we can write apps and drivers locally, and run them on
the remote right awaywithout explicit copying, NFS shares, USB sticks,
etc! :‑)



DEMO: Interfacing with remote devices



Playing Along in a VM

git clone https://github.com/u-root/cpubinaries
cd cpubinaries
./QEMU -kernel cpukernel

In another session:

cd cpubinaries
./cpu -key ./cpu_rsa localhost cat /proc/cpuinfo
processor : 0
vendor_id : AuthenticAMD
cpu family : 6
model : 6
model name : QEMU TCG CPU version 2.5+
stepping : 3
microcode : 0x1000065
cpu MHz : 2415.355



Playing Along in a VM
git clone https://github.com/u-root/cpubinaries
cd cpubinaries
./QEMU -kernel cpukernel

In another session:

cd cpubinaries
./cpu -key ./cpu_rsa localhost cat /proc/cpuinfo
processor : 0
vendor_id : AuthenticAMD
cpu family : 6
model : 6
model name : QEMU TCG CPU version 2.5+
stepping : 3
microcode : 0x1000065
cpu MHz : 2415.355



Playing Along in a VM
git clone https://github.com/u-root/cpubinaries
cd cpubinaries
./QEMU -kernel cpukernel

In another session:

cd cpubinaries
./cpu -key ./cpu_rsa localhost cat /proc/cpuinfo
processor : 0
vendor_id : AuthenticAMD
cpu family : 6
model : 6
model name : QEMU TCG CPU version 2.5+
stepping : 3
microcode : 0x1000065
cpu MHz : 2415.355



Related Ideas

Hellaphone
Researchers put Inferno (another Plan 9 OS) instead of Android’s Java
environment on a phone. Inferno can run as a Linux userland.
In Plan 9, there is a strong “everything is a file” (for real) concept. I.e.,
you can echo "dial +123456789" > /phone/phone.
So from another machine, you can also do this:
echo "sms +123456789 Hello!" | cpu phone tee /phone/sms
Put that on a PinePhone, make it a 9inePhone! :‑)

On a Raspberry Pi (remember: not very open!)
article: Poor Man’s Virtual FileSystemwith 9p, Rust, and a
Raspberry Pi
pick up Gokrazy and add cpud
just run cpud in a stock Raspberry Pi OS environment

https://jfloren.net/b/2015/8/18/2
https://medium.com/@hdswick/poor-mans-virtual-filesystem-with-9p-rust-and-a-raspberry-pi-95ea1d4703ea
https://medium.com/@hdswick/poor-mans-virtual-filesystem-with-9p-rust-and-a-raspberry-pi-95ea1d4703ea
https://gokrazy.org


Related Ideas

Hellaphone
Researchers put Inferno (another Plan 9 OS) instead of Android’s Java
environment on a phone. Inferno can run as a Linux userland.

In Plan 9, there is a strong “everything is a file” (for real) concept. I.e.,
you can echo "dial +123456789" > /phone/phone.
So from another machine, you can also do this:
echo "sms +123456789 Hello!" | cpu phone tee /phone/sms
Put that on a PinePhone, make it a 9inePhone! :‑)

On a Raspberry Pi (remember: not very open!)
article: Poor Man’s Virtual FileSystemwith 9p, Rust, and a
Raspberry Pi
pick up Gokrazy and add cpud
just run cpud in a stock Raspberry Pi OS environment

https://jfloren.net/b/2015/8/18/2
https://medium.com/@hdswick/poor-mans-virtual-filesystem-with-9p-rust-and-a-raspberry-pi-95ea1d4703ea
https://medium.com/@hdswick/poor-mans-virtual-filesystem-with-9p-rust-and-a-raspberry-pi-95ea1d4703ea
https://gokrazy.org


Related Ideas

Hellaphone
Researchers put Inferno (another Plan 9 OS) instead of Android’s Java
environment on a phone. Inferno can run as a Linux userland.
In Plan 9, there is a strong “everything is a file” (for real) concept. I.e.,
you can echo "dial +123456789" > /phone/phone.

So from another machine, you can also do this:
echo "sms +123456789 Hello!" | cpu phone tee /phone/sms
Put that on a PinePhone, make it a 9inePhone! :‑)

On a Raspberry Pi (remember: not very open!)
article: Poor Man’s Virtual FileSystemwith 9p, Rust, and a
Raspberry Pi
pick up Gokrazy and add cpud
just run cpud in a stock Raspberry Pi OS environment

https://jfloren.net/b/2015/8/18/2
https://medium.com/@hdswick/poor-mans-virtual-filesystem-with-9p-rust-and-a-raspberry-pi-95ea1d4703ea
https://medium.com/@hdswick/poor-mans-virtual-filesystem-with-9p-rust-and-a-raspberry-pi-95ea1d4703ea
https://gokrazy.org


Related Ideas

Hellaphone
Researchers put Inferno (another Plan 9 OS) instead of Android’s Java
environment on a phone. Inferno can run as a Linux userland.
In Plan 9, there is a strong “everything is a file” (for real) concept. I.e.,
you can echo "dial +123456789" > /phone/phone.
So from another machine, you can also do this:
echo "sms +123456789 Hello!" | cpu phone tee /phone/sms

Put that on a PinePhone, make it a 9inePhone! :‑)

On a Raspberry Pi (remember: not very open!)
article: Poor Man’s Virtual FileSystemwith 9p, Rust, and a
Raspberry Pi
pick up Gokrazy and add cpud
just run cpud in a stock Raspberry Pi OS environment

https://jfloren.net/b/2015/8/18/2
https://medium.com/@hdswick/poor-mans-virtual-filesystem-with-9p-rust-and-a-raspberry-pi-95ea1d4703ea
https://medium.com/@hdswick/poor-mans-virtual-filesystem-with-9p-rust-and-a-raspberry-pi-95ea1d4703ea
https://gokrazy.org


Related Ideas

Hellaphone
Researchers put Inferno (another Plan 9 OS) instead of Android’s Java
environment on a phone. Inferno can run as a Linux userland.
In Plan 9, there is a strong “everything is a file” (for real) concept. I.e.,
you can echo "dial +123456789" > /phone/phone.
So from another machine, you can also do this:
echo "sms +123456789 Hello!" | cpu phone tee /phone/sms
Put that on a PinePhone, make it a 9inePhone! :‑)

On a Raspberry Pi (remember: not very open!)
article: Poor Man’s Virtual FileSystemwith 9p, Rust, and a
Raspberry Pi
pick up Gokrazy and add cpud
just run cpud in a stock Raspberry Pi OS environment

https://jfloren.net/b/2015/8/18/2
https://medium.com/@hdswick/poor-mans-virtual-filesystem-with-9p-rust-and-a-raspberry-pi-95ea1d4703ea
https://medium.com/@hdswick/poor-mans-virtual-filesystem-with-9p-rust-and-a-raspberry-pi-95ea1d4703ea
https://gokrazy.org


Related Ideas

Hellaphone
Researchers put Inferno (another Plan 9 OS) instead of Android’s Java
environment on a phone. Inferno can run as a Linux userland.
In Plan 9, there is a strong “everything is a file” (for real) concept. I.e.,
you can echo "dial +123456789" > /phone/phone.
So from another machine, you can also do this:
echo "sms +123456789 Hello!" | cpu phone tee /phone/sms
Put that on a PinePhone, make it a 9inePhone! :‑)

On a Raspberry Pi (remember: not very open!)
article: Poor Man’s Virtual FileSystemwith 9p, Rust, and a
Raspberry Pi
pick up Gokrazy and add cpud
just run cpud in a stock Raspberry Pi OS environment

https://jfloren.net/b/2015/8/18/2
https://medium.com/@hdswick/poor-mans-virtual-filesystem-with-9p-rust-and-a-raspberry-pi-95ea1d4703ea
https://medium.com/@hdswick/poor-mans-virtual-filesystem-with-9p-rust-and-a-raspberry-pi-95ea1d4703ea
https://gokrazy.org


Thanks!



Questions?



Resources
Slides
https://metaspora.org/drivers‑from‑outer‑space.pdf

Projects

https://u‑root.org https://linuxboot.org

Repos, LinuxBoot chapter
https://github.com/u‑root/cpu
https://github.com/u‑root/cpubinaries
https://book.linuxboot.org/cpu

https://metaspora.org/drivers-from-outer-space.pdf
https://u-root.org
https://linuxboot.org
https://github.com/u-root/cpu
https://github.com/u-root/cpubinaries
https://book.linuxboot.org/cpu

	Introduction
	Hardware and Driver Issues
	From Outer Space…?
	Seamless Revolution
	DEMO: Run commands over cpu
	DEMO: Relationships between host and remote
	DEMO: Interfacing with remote devices
	Thanks!
	Questions?

